CHENBRO

RM14604/08 Technical Product Specification

A document providing an overview of product features, functions, architecture, and support specifications

Revision 1.2

JAN 2017

Chenbro RM Product Marketing

Revision History

Date	Revision Number	Modifications
2016/11/18	R1.0	Initial release
2016/12/13	R1.1	Modified version
2017/01/06	R1.2	Add RM14608 Spec

Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Chenbro disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Chenbro representative to obtain the latest TPS.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Chenbro, and the Chenbro logo are trademarks of Chenbro Micom Co.,Ltd in the worldwide.

*Other names and brands may be claimed as the property of others

© 2017 Chenbro Micom Co.,Ltd.

Table of Contents

1.	Introducti	on	1
	1.1	Chapter Outline	1
	1.2	Server Board Use Disclaimer	1
	1.3	Product Errata	2
2.	Product O	verview	3
	2.1	Operating System Support	4
	2.1.1	OS Validation Levels	5
	2.1.2	OS Technical Support Levels	5
	2.2	System Features Overview	6
	2.3	Server Board Features Overview	7
	2.4	Back Panel Features	9
	2.5	Front Control Panel	9
	2.6	Front Drive Bay Options	10
	2.7	System Dimensions	10
	2.7.1	Chassis Dimensions	10
	2.7.2	HDD Tray Dimensions	11
	2.7.3	Pull-out Tag Label Emboss Dimensions	12
	2.8	Available Rack Mounting Kit Options	13
	2.9	System Level Environmental Limits	13
	2.10	System Packaging	14
	2.10.1	RM14604/08 Weight Information	15
3.	System Po	wer	16
	3.1	General Description And Scope	16
	3.2	Reference Documents	16
	3.2.1	EMI Regulatory	16
	3.2.2	Power Supply Module Mechanical Overview	16

3.3	Electrical Requirements	
3.3.1	Output Electrical Requirements	
	3.3.1.1 Output Rating	
	3.3.1.2 Load Capacity Specifications	
	3.3.1.3 Hold-Up Time (@FULL LOAD)	
	3.3.1.4 Output Rise Time	
	3.3.1.5 Over Voltage Protection	
	3.3.1.6 Short Circuit Protection	
	3.3.1.7 Over Current Protection	
	3.3.1.8 Power Good Signal	
3.3.2	Transient Load Requirement	
3.3.3	Input Electrical Specifications	
	3.3.3.1 Voltage Range	
	3.3.3.2 Input Frequency	
	3.3.3.3 Inrush Current	
	3.3.3.4 Input Line Current	
3.3.4	Efficifency	21
3.3.5	Standby Power Consumption (5Vsb)	21
3.3.6	PS_ON#	21
3.4	Environmental Requirements	
3.4.1	Temperature Range	22
3.4.2	Humidity	22
3.4.3	Vibration	22
3.4.4	Shock	
3.5	Safety	23
3.5.1	Leakage Current	23
3.6	Electormagnetic Compatibility	23
3.6.1	Lime Conducted EMI	23
3.6.2	Radiated EMI	23
3.7	Labelling	23
3.7.1	Model Number Label	23
3.7.2	DC Output Identification	23

	3.8	Reliability		
4.	Thermal	Management		24
	4.1	Thermal Ope	eration and Configuration Requirements	25
	4.2	Thermal Ma	nagement Overview	
	4.2.1	Fan Speed C	ontrol	
	4.2.2	Programmat	ble Fan PWM Offset	
	4.2.3	Fan Domain	5	
	4.2.4	Nominal Far	Speed	
	4.2.5	Thermal and	Acoustic Management	
	4.2.6	Thermal Sen	sor Input to Fan Speed Control	
	4.3	System Fans		
5.	System S	Storage and Pe	ipheral Drive Bay Overview	30
	5.1	Front Mount	Drive Support	
	5.2	System Fan I	RVI and Hard Disk Drive Storage Performance	
	5.3	External Hot	Swap Drive Carriers	
	5.4	Internal 2.5'	HDD Optional	
	5.5	Storage Back	plane Optional	
	5.5.1	I2C Function	ality	
	5.5.2	4 x 3.5" Driv	e Hot-Swap Backplane Overview	
		5.5.2.1 1	2G Mini SAS HD 4 Port Backplane	
		5.5.2.2 1	2G SAS 4 Port Backplane	
		5.5.2.3 1	2G Mini SAS HD 8 Port Backplane	
	5.6	SATA DOM S	upport	
6.	Front Co	ntrol Panel and	I I/O Panel Overview	45
	6.1	I/O Panel Fe	atures	
	6.2	Control Pane	l Features	
	6.2.1	LED Board A	nd System Status LED	
7.	PCle* Ri	ser Card Suppo	rt	48
8.	Intel® I/	O Module Supp	ort	49

9.	Basic and	Advanced	d Server Management Features	
9	.1	IPMI 2.0	Features	
9	.2	Non-IPM	1I Features	51
	9.2.1	Dedicate	ed Management Port	
	9.2.2	Embedd	ed Web Server	52
	9.2.3	Advance	ed Management Feature Support (RMM4 Lite)	54
		9.2.3.1	Keyboard, Video, Mouse (KVM) Redirection	54
		9.2.3.2	Remote Console	55
		9.2.3.3	Performance	55
		9.2.3.4	Security	56
		9.2.3.5	Availability	56
		9.2.3.6	Usage	56
		9.2.3.7	Force-enter BIOS Setup	56
		9.2.3.8	Media Redirection	56
Арр	oendix A: In	tegration	and Usage Tips	
Арр	oendix B: P	OST Code I	Diagnostic LED Decoder	
Арр	oendix C: PC	OST Code I	Errors	
Арр	pendix D: H	igh Tempe	erature Ambient Info	

List of Figures

Figure 1.System Components Overview-RM14604	6
Figure 2.System Components Overview-RM14608	6
Figure 3.Top Cover Features	7
Figure 4.Server Board S1200SPS Features	8
Figure 5.On-board Diagnostic LEDs	8
Figure 6.System Reset and Configuration Jumpers	9
Figure 7. Back Panel Features	9
Figure 8.Front Control Panel	9
Figure 9.3.5" Drive Bay-4 Drive Configuration(RM14604)	.10
Figure 10.2.5" Drive Bay-8 Drive Configuration(RM14608)	.10
Figure 11. Chassis Dimensions	.11
Figure 12. 3.5" HDD Tray Dimensions	.12
Figure 13. 2.5" HDD Tray Dimensions	.12
Figure 14. Pull-out Tag Label Emboss Dimensions	.13
Figure 15. 400W AC Fixed Power Supply	.16
Figure 16. 400W Power Supply Mechanical drawings	.17
Figure 16.Power Good Signal	.20
Figure 18.System Air Flow and Fan Identification	.24
Figure 19.Fan Control Model	.28
Figure 20.System Fans	.28
Figure 21.System Fan Connector Locations on Server Board	.29
Figure 22. 4x3.5" Drive Bay Configuration	.30
Figure 23. 8x2.5" Drive Bay Configuration	.30
Figure 24. Hot Swap Storage Device Carrier Removal	.31
Figure 25. 2.5" SSD mounted to 3.5" Drive Tray	.31
Figure 26.3.5"HDD Installation and Removal	.32
Figure 27. Drive Tray LED Identification	.32
Figure 28.Internal 2.5" HDD Installation	.33
Figure 29. Backplane Installation-RM14604	.33
Figure 30. Backplane Installation-RM14608	.34
Figure 31. 12G Mini SAS HD 4 Port Backplane– front view	.35
Figure 32. 12G Mini SAS HD 4 Port Backplane – rear view	.35
Figure 33. 12G SAS 4 Port Backplane – front view	.39
Figure 34. 12G SAS 4 Port Backplane – rear view	.39
Figure 35. 12G Mini SAS HD 8 Port Backplane– front view	.41
Figure 36. 12G Mini SAS HD 8 Port Backplane – rear view	.41
Figure 37. Front I/O Panel Features	.45
Figure 38. Front Panel Control and Buttons	.45
Figure 39.LED Board	.46

Figure 40. Add-in Card Support	48
Figure 41. Riser Card Assembly	48
Figure 42. Intel [®] I/O Module Placement	49
Figure 43. Intel [®] RMM4 Lite Activation Key Lnstallation	52
Figure 44. POST Diagnostic LED Location	59

List of Tables

Table 1.Reference Documents	1
Table 2. Chenbro RM14604/08 Feature Set	3
Table 3. Operating System Support List	4
Table 4. Operating System Validation Levels	5
Table 5. Front Control Panel Options	.10
Table 6. System Environmental Limits Summary	.13
Table 7. RM14604/08 Weight Information	.15
Table 8. Output Rating	.18
Table 9. Load Capacity Specifications	.18
Table 10.Over Voltage Protection	.19
Table 11.Over Current Protection	.19
Table 12.Power Good Signal	.19
Table 13.Transient Load Requirement	.20
Table 14. Voltage Range	.20
Table 15.Input Frequency	.20
Table 16.Inrush Current	.20
Table 17.Input Line Current	.21
Table 18. ACLine Sag Transient Performance – 400W Power Supply	.21
Table 19. AC Line Surge Transient Performance – 400W Power Supply	.21
Table 20. PS_ON# Signal Characteristics	.22
Table 21.Temperature Range	.22
Table 22.Humidity	.22
Table 23. System Volumetric Air Flow	.24
Table 24. System Fan Connector Pin-out	.29
Table 25 Drive Power LED/Activity LED States	.32
Table 26.12G Mini SAS HD 4 Port Backplane	.34
Table 27.Connector Pin-out –4-port Mini SAS HD Backplane	.36
Table 28.12G SAS 4 Port Baackplane	.38
Table 29.Connector Pin-out – SAS Backplane	.39
Table 30.12G Mini SAS HD 8 Port Backplane	.40
Table 31.Connector Pin-out –8-port Mini SAS HD Backplane	.42
Table 32. SATA/SATADOM capable Connector Pin-out	.44
Table 33. Front Control Panel Buttons And Indicators	.45
Table 34.LED Board Specification	.46
Table 35.LED Board System Connector(J1A1)	.46
Table 36. Supported Intel [®] I/O Modules	.49
Table 37. Intel®Remote Management Module 4 (RMM4) Options	.50
Table 38. Basic and Advanced Server Management Features Overview	.50
Table 39.POST Progress Code LED Example	.60

Table 40.POST Progress Codes	60
Table 41.MRC Progress Codes	66
Table 42.POST Progress LED Codes	68
Table 43.POST Error Codes and Messages	70
Table 44.POST Error Beep Codes	72
Table 45.Integrated BMC Beep Codes	73

1. Introduction

This document describes the embedded functionality and available features of the integrated server system which includes: the chassis layout, system boards, power subsystem, cooling subsystem, storage subsystem options, and available installable options. Note that some system features are provided as configurable options and may not be included standard in every system configuration offered.

Server board specific detail can be obtained by referencing the Intel[®]Server Board S1200SP Technical Product Specification.

NOTE: Some of the documents listed in the following table are classified as "Chenbro Confidential". These documents are made available under a Non-Disclosure Agreement (NDA) with Chenbro and must be ordered through your local Chenbro representative.

	Document	
	Classification	
RM14604/08 Datasheet	Chenbro Confidential	
RM14604/08 Sales kit	Chenbro Confidential	
RM14604/08 System Test Report	Chenbro Confidential	
Intel® Server Board S1200SP Family Technical Product	Intel Confidential	
Specification 1.0		

Table 1.Reference Documents

1.1 Chapter Outline

This document is divided into the following chapters:

- Chapter 1 Introduction
- Chapter 2 Product Overview
- Chapter 3 System Power
- Chapter 4 Thermal Management
- Chapter 5 System Storage and Peripherals Drive Bay Overview
- Chapter 6 Front Control Panel and I/O Panel Overview
- Chapter 7 PCIe* Riser Card Support
- Chapter 8 Intel® I/O Module Support
- Chapter 9 Basic and Advanced Server Management Features
- Appendix A Integration and Usage Tips
- Appendix B POST Code Diagnostic LED Decoder
- Appendix C POST Code Errors
- Appendix D High Temperature Ambient Info

1.2 Server Board Use Disclaimer

Intel Corporation server boards support add-in peripherals and contain a number of high-density VLSI and power delivery components that need adequate airflow to cool. Chenbro ensures through its own chassis development and testing that when Intel® server building blocks are used together, the fully integrated system will meet the intended thermal requirements of these components. It is the responsibility of the system integrator who chooses not to use

Chenbro-developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of airflow required for their specific application and environmental conditions. Chenbro Corporation cannot be held responsible if components fail or the server board does not operate correctly when used outside any of their published operating or non-operating limits.

1.3 Product Errata

Shipping product may have features or functionality that may deviate from published specifications. These deviations are generally discovered after the product has gone into formal production. Chenbro terms these deviations as product Errata. Known product Errata will be updated in the Product TPS for the given product which can be downloaded from the following Chenbro web site: <u>http://www.chenbro.com</u>

2. Product Overview

This chapter provides a high-level overview of the system features and available options as supported in different system models within this product. Greater detail for each major sub-system, feature, or option is provided in the following chapters.

Feature	Description	
Chassis Type	1U Rack Mount Chassis	
Server Board	Intel Server Board S1200SP	
	One LGA1151 (Socket H4) product socket	
Processor	 Support for one Intel® Xeon® E3-1200 V5 processor without 	
Support		
	 Maximum supported Thermal Design Power (TDP) of up to 80W. 8 GT/s point-to-point DML3.0 interface to PCH 	
	 Two memory channels, four memory DIMM Slots (Two memory DIMMs 	
Memory	per channel)	
	 Support for 2133 MT/s Unbuffered DIMMs (UDIMM DDR4 ECC memory) 	
Chipset	Intel®C236 Platform Controller Hub (PCH) chipset	
	1xDB-15 video connector	
	Two Gigabit Ethernet Ports	
External I/O	 Dedicated RJ-45 server management port 	
connections	 Two USB 2.0 connectors on back panel 	
	 Two USB 3.0 connectors on back panel 	
	 Two USB 3.0 connectors on front panel 	
	One Type-A USB 2.0 connector	
Internal I/O	 One 2x5 pin connector providing front panel support for two USB 2.0 	
connectors	ports	
/headers	 One 2x10 pin connector providing front panel support for two USB 2.0/3.0 	
	ports	
	The server board includes a proprietary on-board connector allowing for the	
	installation of a variety of available Intel I/O modules.An installed I/O module	
	can be supported in addition to standard on-board features and add-in PCIe*	
	card.	
Intel I/O Module	The Following Intel®I/O Modules are supported:	
Accessory	 AXX4P1GBPWLIOM – Quad port 1GbEI/O based on Intel®Ethernet 	
Options	Controller 1350	
	 AXX10GBNIAIOM – Dual SFP+ port 10GbEbased on Intel®82599 10 	
	Gigabit Ethernet Controller	
	 AXX10GBTWLIOM3 – Dual RJ-45 port 10GBASE-T based on 	
	Intel®Ethernet Controller X540	
System Fans	 Three managed 40mm single rotor system fans 	
	 One power supply fan for each installed power supply module 	

Table 2. Chenbro RM14604/08 Feature Set

Riser Card	 One x16 PCIe* 3.0 Riser Card 84H314610-023 on a x8 Riser slot (slot-6)
Support	
Video	 Integrated 2D video controller
VIdeo	 16 MB DDR3 Memory
	 8x SATA connectors up to 6Gbps.
On based	 1x SATADOM connector (SATA port 4)
On-board	 1x 75 pin connector for M.2 SATA SSD (2242 form factor)
storage	Embedded Software SATA RAID
controllers and	 Intel®RSTe 4 SW RAID through onboard SATA connectors provides SATA RAID 0/1/10/5.
optiono	 Intel®Embedded Server RAID Technology II through onboard SATA connectors provides SATA RAID 0/1/10 and optional RAID 5 support provided by the Intel®RAID Activation Key RKSATA8R5
Security	Intel®Trusted Platform Module (TPM) 1.2 based on LPC
	 Integrated Base boaaard Management Controller.IPMI 2.0 compliant
Sorvor	 Support for Intel Server Management Software
Management	 On-board RJ45 management port
Management	 Advanced Server Management via an Intel Remote Management Module
	4 Lite(Accessory Option)
Power Supply	 The server system supports two options for Power Supply:
Options	 1 x 400w Power Supply (Fixed)
	Hot Swap Backplane Options:
Storage Bay	NOTE: All available backplane options have support for SAS 3.0 (12 Gb/sec)
Options	• 4 x 3.5" SAS/SATA backplane
	• 4 x 3.5" Mini-SAS HD backplane
	• 8 x 2.5" SAS/SATA backplane
Supported Rack	 84H314610-003—Tool-less Slide Rail
Mount Kit	
Accessory	
Options	

2.1 Operating System Support

As of this writing, the Chenbro Product RM14604/08 provides support for the following operating systems. This list will be updated as new operating systems are validated by Chenbro.

Operating System	Operating System Validation Level(P)
Windows Server 2012* R2 with Hyper-Vx64 & EFI	P1
Red Hat Enterprise Linux* 7.0 with KVM x64 & UEFI	P1
SuSELinux Enterprise Server* 12 with XEN x64	P1
Red Hat Enterprise Linux 6U5 with KVM x64 & UEFI	P2
VMWare ESXi* 5.5 U3	P2

Table 3. Operating System Support List

SuSELinux Enterprise Server 11 SP4 with XEN x64	P2
Windows Server 2008 R2 SP1	P2
Windows 7*	P2
Ubuntu* 14.04	P2
FreeBSD* 10.1	P3
CentOS* 7.0	P3

Table 4. Operating System Validation Levels

Operating System Validation Levels	P1	P2	P3
Basic Installation testing	Yes	Yes	Yes
Test all on-board I/O features in all modes	Yes		
Adapter\Peripheral Compatibility & Stress testing	Yes		
Technical Support Level	T1	T2	Т3

See the following sections for additional information regarding validation levels and technical support levels as referenced in Table 4.

2.1.1 OS Validation Levels

<u>Basic installation testing</u> is performed with each supported operating system. The testing validates that the system can install the operating system and that the base hardware feature set is functional. A small set of peripherals is used for installation purposes only. Add-in adapter cards are not tested.

<u>Adapter compatibility validation (CV) testing</u> uses test suites to gain an accurate view of how the server performs with a wide variety of adapters under the primary supported operating systems. These tests are designed to show hardware compatibility between the cards and the server platform and include functional testing only. No heavy stressing of the systems or the cards is performed for CV testing.

<u>Stress Testing</u> uses configurations that include add-in adapters in all available slots for a 48-hour (two-day), or a 72-hour (three-day) test run without injecting errors. Each configuration passes an installation test and a Network/Disk Stress test. Any fatal errors that occur require a complete test restart.

2.1.2 OS Technical Support Levels

T1: Chenbro will provide support for issues involving the installation and/or functionality of a specified operating system as configured with or without supported adapters and/or peripherals.

T2: Chenbro will provide and test operating system drivers for each of the server board's integrated controllers, provided that the controller vendor has a driver available upon request. Vendors will not be required by Chenbro to develop drivers for operating systems that they do not already support. Chenbro will NOT provide support for issues related to the use of any add-in adapters or peripherals installed in the server system when an operating system that received only basic installation testing is in use.

T3: Chenbro will not provide technical support for an open source operating system. All questions and issues related to an open source operating system must be submitted to and supported by the open source community supporting the given operating system.

2.2 System Features Overview

Figure 1.System Components Overview-RM14604

Figure 2.System Components Overview-RM14608

Figure 3.Top Cover Features

2.3 Server Board Features Overview

The following illustration provides a general overview of the server board, identifying key feature and component locations. Please refer to *Intel[®] Server Board S1200SP Technical Product Specification* for more information.

Figure 4.Server Board S1200SPS Features

The server board includes several LEDs to identify system status. The following illustrations define supported LEDs and identify their location.

Figure 5.On-board Diagnostic LEDs

AF006906

Figure 6.System Reset and Configuration Jumpers

2.4 Back Panel Features

Figure 7. Back Panel Features

2.5 Front Control Panel

Figure 8.Front Control Panel

Table 5. Fi	ront Contro	l Panel O	ptions
-------------	-------------	-----------	--------

Label	Description
А	USB 2.0 /3.0port
В	ID Switch
С	System Reset Button
D	LAN1,LAN2 Activity LED
Е	HDD Activity LED
F	System Status LED
G	Power on Button and LED

2.6 Front Drive Bay Options

Figure 9.3.5" Drive Bay-4 Drive Configuration(RM14604)

Figure 10.2.5" Drive Bay-8 Drive Configuration(RM14608)

2.7 System Dimensions

2.7.1 Chassis Dimensions

Figure 11. Chassis Dimensions

Figure 12. 3.5" HDD Tray Dimensions

Figure 13. 2.5" HDD Tray Dimensions

2.7.3 Pull-out Tag Label Emboss Dimensions

Figure 14. Pull-out Tag Label Emboss Dimensions

2.8 Available Rack Mounting Kit Options

<u>Advisory Note</u> – Available rack and cabinet mounting kits are not designed to support shipment of the server system while installed in a rack. If you chose to do so, Chenbro advises you verify your shipping configuration with appropriate shock and vibration testing, before shipment. Chenbro does not perform shipping tests which cover the complex combination of unique rack offerings and custom packaging options.

<u>Caution</u>: Exceeding the rail kit's specified maximum weight limit or misalignment of the server in the rack may result in failure of the rack rails, resulting in damage to the system or personal injury. Two people or the use of a mechanical assist tool to install and align the server into the rack is highly recommended.

Available Rack mounting kits:

- <u>84H314610-003 (Tool-less)</u> Vale plus short rail
 - 560mm max travel length
 - 123 lbs. (56 Kg) max support weight
 - Stab-in system install
 - x8 #10-32 screws to mount rail kit on rack flange (screw kit come with rail kit assembling) No cable management arm support

2.9 System Level Environmental Limits

The following table defines the system level operating and non-operating environmental limits.

 Table 6. System Environmental Limits Summary

Parameter		Limits		
Temperature	Operating	ASHRAE Class A2 – Continuous Operation. 10° C to 35° C (50° F to 95° F) with the maximum rate of change not to exceed 10°Cper hour		
remperature		ASHARE Class A3 – Includes operation up to 40°C for up to 900 hours per year. Refer to Appendix E for detailed guidance.		
	Shipping	-20° Cto 70° C(-4° F to 158° F)		

Altitude	Operating	Support operation up to 3050m with ASHRAEclass de-ratings.	
Humidity	Shipping	50% to 90%, non-condensing with a maximum wet bulb of 28° C (at temperatures from 25° Cto 35° C)	
	Operating	Half sine, 2 g, 11 mSec	
Shock	Unpackaged	Trapezoidal, 25 g, velocity change is based on packaged weight	
	Packaged	ISTA (International Safe Transit Association) Test Procedure 3A 2008	
Vibration	Unpackaged	5 Hz to 500 Hz 2.20 g RMS random	
	Packaged	ISTA (International Safe Transit Association) Test Procedure 3A 2008	
	Voltage	90 V to 132 V and 180 V to 264 V	
	Frequency	47 Hz to 63 Hz	
	Source Interrup t	No loss of data for power line drop-out of 12 mSec	
AC-DC	Surge Non- operating and opera ting	Unidirectional	
		ACLeads 2.0 kV	
	Line to earth	I/O Leads 1.0 kV	
	Olly	DCLeads 0.5 kV	
ESD	Air Discharged	12.0 kV	
	Contact Discha rge	8.0 kV	
	Power in Watts	400 W	
Acoustics Sound Power Measured	Servers/Rack Mount Sound Power Level (in BA)	7.0	

2.10 System Packaging

The original Chenbro packaging, in which the server system is delivered, is designed to provide protection to a fully configured system and was tested to meet ISTA (International Safe Transit Association) Test Procedure 3A (2008). The packaging was also designed to be re-used for shipment after system integration has been completed.

The original packaging includes –the shipping box, and various protective inner packaging components. The box and packaging components are designed to function together as a protective packaging system. When reused, all of the original packaging material must be used, including box and each inner packaging component. In addition, all inner packaging components MUST be reinstalled in the proper location to ensure adequate protection of the system for subsequent shipment.

NOTE: The design of the inner packaging components does not prevent improper placement within the packaging assembly. There is only one correct packaging assembly that will allow the package to meet the ISTA (International Safe Transit Association) Test Procedure 3A (2008) limits.

Failure to follow the specified packaging assembly instructions may result in damage to the system during shipment.

2.10.1 RM14604/08 Weight Information

		, ,		
Product	Net Weight (kg)	Gross Weight (kg)	Net Weight (Lbs.)	Gross Weight (Lbs.)
RM14604	7.5	10.0	16.5	22.0
RM14608	7.5	10.0	16.5	22.0

Table 7. RM14604/08 Weight Information

NOTE: An L6 system does not include processors, memory, drives, or add-in cards. It is the system configuration as shipped from Chenbro. Integrated system weights (System configurations that include the items above) will vary depending on the final system configuration. For the 1U product, a fully integrated un-packaged system can weigh up to 40 Lbs. (18+ Kg).

3. System Power

This chapter provides a high level overview of the features and functions related to system power.

3.1 General Description And Scope

This is the specification of Model FSP400-60FGGBA;AC-line powered switching power supply with active PFC(Power Factor Correction) circuit, meet EN61000-3-2 and with Full Range Input features. Designed and manufactured by FSP GROUP.

The 5Vsb power is less than 0.5Winput at power off mode (PS_ON input at high state) which is comply with EuP Lot 6 year 2013 requirement.

The specification below is intended to describe as detailedly as possible the functions and performance of the subject power supply. Any comment or additional requirements to this specification from our customers will be highly appreciated and treated as a new target for us to approach.

Figure 15. 400W AC Fixed Power Supply

3.2 Reference Documents

The subject power supply will meet the EMI requirements and obtain main safety approvals as following:

3.2.1 EMI Regulatory

- FCC Port 15 Subpart J, Class 'B' 115 Vac operation.
- CISPR 22 Class 'B' 230 Vac operation.

3.2.2 Power Supply Module Mechanical Overview

Figure 16. 400W Power Supply Mechanical drawings

3.3 Electrical Requirements

3.3.1 Output Electrical Requirements

The subject power supply will meet all electrical specifications below ,over the full operation temperature range and dynamic load regulation.

3.3.1.1 Output Rating

Output	Nominal	Regulation	Ripple/Noise	Min	Max	Peak
1	+3.3V	±5%	50mV	0.1A	14.0A	
2	+5V	±5%	50mV	0.1A	16.0A	
3	+12V1	±5%	120mV	0.1A	18.0A	
4	+12V2	±5%	120mV	0.2A	18.0A	
5	-12V	±10%	120mV	0A	0.5A	
6	+5VSB	±5%	50mV	0A	3.0A	

Table 8. Output Rating

(1) The +3.3V and +5V total output shall not exceed 90watts.

(2) Total output for this subject power supply is 400watts

(3) Ripple and noise measurements shall be made under all specified load conditions through a single pole pass filter with 20MHz cutoff frequency. Outputs shall bypassed at the connector with a 0.1uf ceramic disk capacitor and a 47uF electrolytic capacitor to simulate system loading.

3.3.1.2 Load Capacity Specifications

The cross regulation defined as follows, the voltage regulation limits DC include DC Output ripple & noise.

LOAD	+3.3V	+5V	+12V1	+12V2	-12V	+5VSB
1	7.35A	8.41A	13.26A	13.62A	0.37A	2.21A
2	0.1A	16A	0.1A	0.2A	0A	2A
3	14A	0.1A	0.1A	0.2A	0A	3A
4	0.1A	0.1A	18A	0.2A	0A	1A
5	0.1A	0.1A	0.1A	18A	0A	3A
6	3.68A	4.2A	6.63A	6.63A	0.18A	1.1A
7	0.1A	0.1A	15A	18A	0.1A	0.4A
8	0.1A	0.1A	18A	15A	0.1A	0.4A
9	1.47A	1.68A	2.65 A	2.65A	0.07A	0.44A
10	0.1A	0.1A	0.1A	0.2A	0A	0A

Table 9. Load Capacity Specifications

3.3.1.3 Hold-Up Time (@FULL LOAD)

- 1. 115V / 60Hz : 12 mSec. Minimum.
- 2. 230V / 50Hz : 17 mSec. Minimum.

The output voltage will remain within specification, in the event that the input power is removed or interrupted, for the duration of one cycle of the input frequency. The interruption may occur at any point in the AC voltage cycle. The power good signal shall remain high during this test.

3.3.1.4 Output Rise Time

(10% To 90% Of Final Output Value, @FULL LOAD)

115V-rms or 230V-rms

+5Vdc : 20ms Maximum

3.3.1.5 Over Voltage Protection

Voltage Source	Protection Point
+3.3Vdc	5V
+5Vdc	7V
+12V1dc +12V2dc	16V

Table 10.0ver Voltage Protection

3.3.1.6 Short Circuit Protection

Output short circuit is defined to be a short circuit load of less than 0.1 ohm.

In the event of an output short circuit condition on +3.3V,+5V or +12V output, the power supply will shutdown and latch off without damage to the power supply. The power supply shall return to normal operation after the short circuit has been removed and the power switch has been turned off for no more than 2 seconds. (DC PS/ON OFF)

In the event of an output short circuit condition on -12V output, the power supply will not be damaged. The power supply shall return to normal operation as soon as the short circuit has been removed. and the power switch has been turned off for no more than 2 seconds. (DC PS/ON OFF)

3.3.1.7 Over Current Protection

V	(A) Limit			
+12V1	22A~32A			
+12V2	22A~32A			
+5V	22A~40A			
+3.3V	~40A			

Table 11.Over Current Protection

3.3.1.8 Power Good Signal

The power good signal is a TTL compatible signal for the purpose of initiating an orderly star-up procedure under normal input operating conditions. This signal is asserted(low) until +5Vdc has reached 4.75 volts during power up. Characteristics:

TTL signal asserted(low state) : less than 0.5V while sinking 10mA.

TTL signal asserted(high state) : greater than 4.75V while sourcing 500uA.

High state output impedance: less or equal to 1Kohm from output to common.

Table 12.Power Good Signal

POWER GOOD @ 115/230V, FULL LOAD	100 – 500mSec	
POWER FAIL @ 115/230V, FULL LOAD	1 mSec. minimum	

Figure 17. Power Good Signal

3.3.2 Transient Load Requirement

Output	∆Step Load Size	Load Slew Rate	Capacitive Load
+3.3V	30% of max load	0.5 A/µs	3300 µF
+5V	30% of max load	0.5 A/µs	3300 µF
+12V1,+12V2	30% of max load	1.0 A/µs	3300 µF

3.3.3 Input Electrical Specifications

3.3.3.1 Voltage Range

Table :	14.	Voltage	Range
---------	-----	---------	-------

Para	meter	Units
V-in Range	90 – 264	V-rms

3.3.3.2 Input Frequency

Table 15.Input Frequency

Input Frequency	47-63Hz
-----------------	---------

3.3.3.3 Inrush Current

Table 16.Inrush Current

115V	No damage
230V	No damage

(Cold star - 25 deg.C) (No damage)

3.3.3.4 Input Line Current

Tuble 17 input line Guitent				
115V	6 Amps – rms maximum			
230V	3 Amps – rms maximum			

Table 17.Input Line Current

3.3.4 Efficifency

	Full load (100%)	Typical load (50%)	Light load (20%)
115VAC	87%	90%	87%
230VAC	87%	90%	87%

(loading shown in Amps)

Loading	+12V1	+12V2	+5V	+3.3V	-12V	+5Vsb
Full (100%)	13.26A	13.26A	8.41A	7.35A	0.37A	2.21A
Typical (50%)	6.63A	6.63A	4.2A	3.68A	0.18A	1.1A
Light (20%)	2.65A	2.65A	1.68A	1.47A	0.07A	0.44A

3.3.5 Standby Power Consumption (5Vsb)

Input Power < 0.5W @ 5Vsb/45mA & 230Vac input

PS_ON input signal @ High State

Table 18. ACLine Sag Transient Performance - 400W Power Supply

ACLine Sag (10sec interval between each sagging)					
Duration	Sag	Operating ACVoltage	Line Frequency	Performance Criteria	
Continuous	10%	Nominal ACVoltage ranges	50/60Hz	No loss of function or performance	
1 to 12ms	100%	Nominal ACVoltage ranges	50/60Hz	No loss of function or performance	
> 12ms	>30%	Nominal ACVoltage ranges	50/60Hz	Loss of function acceptable, self- recoverable	

Table 19. AC Line Surge Transient Performance - 400W Power Supply

ACLine Surge					
Duration	Surge	Operating ACVoltage	Line Frequency	Performance Criteria	
Continuous	10%	Nominal ACVoltages	50/60Hz	No loss of function or performance	
0 to ½ AC cycle	30%	Nominal ACVoltages	50/60Hz	No loss of function or performance	

3.3.6 **PS_ON**#

PS_ON# is an active-low, TTL-compatible signal that allows a motherboard to remotely control the power supply in conjunction with features such as soft on/off, Wake on LAN+, or wake-on-modem. When PS_ON# is pulled to TTL low, the power supply should turn on the five main DC output rails:

+12VDC, +5VDC, +3.3VDC, and -12VDC. When PS_ON# is pulled to TTL high or open-circuited, the DC output rails should not deliver current and should be held at zero potential with respect to ground. PS_ON# has no effect on the +5VSB output, which is always enabled whenever the AC power is present. Table 19 lists PS_ON# signal characteristics.

The power supply shall provide an internal pull-up to TTL high. The power supply shall also provide debounce circuitry on PS_ON# to prevent it from oscillating on/off at startup when activated by a mechanical switch. The DC output enable circuitry must be SELV-compliant.

	Min	Max
V _{IL} ,Input Low Voltage	0.0V	0.8V
I _{IL} ,Input Low Current (Vin = 0.4V)		-1.6mA
V _{IH} ,Input High Voltage (lin =-200µA)	2.0V	
V _{IH} OPEN circuit, lin=0		5.25V

Table 20. PS_ON# Signal Characteristics

3.4 Environmental Requirements

The power supply will be compliant with each item in this specification for the following Environmental conditions.

3.4.1 Temperature Range

Table 21.Temperature Range

Operationg	400W	0 to +50 deg.C	
Storage		-20 to +80 deg.C	

3.4.2 Humidity

Table 22.Humidity

Operationg	85% RH,Non-condensing
Storage	95% RH,Non-condensing

3.4.3 Vibration

The subject power supply will withstand the following imposed conditions without experiencing non-recoverable failure or deviation from specified output characteristics.

Vibration Operationm0.01g2/Hz at 5Hz sloping to 0.02 g2/Hz at 20Hz,and maintaining 0.02 g2/Hz from 20 Hz to 500Hz.The area under the PSD curve is 3.13 gRMs.The duration shall be 20 minutes per axis for all three axes on all samples.

Plane of vibration to be along three mutually perpendicular axes.

3.4.4 Shock

The subject power supply will withstand the following imposed conditions without experiencing non-recoverable failure or deviation from specified output characteristics.

Storage 40G,9 mSec.half-sine wave pulse in both directions on three mutually perpendicular axes.

Operation 10G,11 mSec.half-sine wave pulse in both directions on three mutually perpendicular axes.

3.5 Safety

3.5.1 Leakage Current

The leakage current from AC to safety ground will not exceed 3.5 mA-rms at 264Vac, 50Hz.

3.6 Electormagnetic Compatibility

3.6.1 Lime Conducted EMI

The subject power supply will meet FCC class B requirements under full load conditions.

3.6.2 Radiated EMI

The power supply will meet FCC and CISPR 22 requierments under normal load conditions.

3.7 Labelling

The power supply will be permanent, legible and complied with all agency requirements.

3.7.1 Model Number Label

Labels will be affixed to the sides of the power supply showing the following.

- Manufacturer's name and logo.
- Model no., serial no., revision level,location of manufacturer.
- The total power output and the maximum load for each output.
- AC input rating.

3.7.2 DC Output Identification

Each output connector will be labeled.

3.8 Reliability

The power supply have a minimum predicted MTBF(MIL-HDBK-217) of 100000 hours of continuous operation at 25oC,maximum-output load, and nominal AC input voltage.

4. Thermal Management

The fully integrated system is designed to operate at external ambient temperatures of between 10°C and 35°C. Working with integrated platform management, several features within the system are designed to move air in a front to back direction, through the system and over critical components to prevent them from overheating and allow the system to operate with best performance.

Figure 18.System Air Flow and Fan Identification

The following table provides air flow data associated with one of the system models within this product, and is provided for reference purposes only. The data was derived from actual wind tunnel test methods and measurements using fully configured (worst case) system configurations. Lesser system configurations may produce slightly different data results. In addition, the CFM data was derived using server management utilities that utilize platform sensor data, and may vary slightly from the data listed in the tables.

4X3.5" Front End					
All System Fan	PSU Fan	w/o PSU(CFM)	w/ PSU(CFM)		
100%	Auto	42.6	44.19		
85%		35.3	37.2		
75%		31.1	32.4		
65%		26.7	27.6		
55%		22.3	22.7		
45%		18.1	18.2		
35%		13.5	14.0		
20%		7.5	7.7		

Table 23. System Volumetric Air Flow

RM14604 is thermally designed and developed in compliance with ASHRAE Class A2 environment guidance; however, there is extra thermal margin for all components in the system, so ASHRAE
Class A3 environment conditions can be thermally supported.

Note: ASHARE Class A3 – Includes operation up to 40°C for up to 900 hours per year. Refer to Appendix D for detailed HTA guidance.

The installation and functionality of several system components are used to maintain system thermals. They include three managed 40mm single rotor system fans, fans integrated into each installed power supply module, an air duct, populated drive carriers, and a CPU heat sink. Drive carriers can be populated with a storage device (SSD or Hard Disk Drive) or supplied drive blank.

4.1 Thermal Operation and Configuration Requirements

To keep the system operating within supported maximum thermal limits, the system must meet the following operating and configuration guidelines:

- The system is designed for sustained operation on ambient temperature up to 35°C (ASHRAE Class A2)
- All externally accessed drive bays must be populated. Drive carriers can be populated with a storage device (SSD or HDD) or supplied drive blank
- When the system is operating, the air duct must be installed at all times
- The system top cover must be installed at all times when the system is in operation in order to have proper air flow

4.2 Thermal Management Overview

In order to maintain the necessary airflow within the system, all of the previously listed components need to be properly installed. For best system performance, the external ambient temperature should remain below 35°C and all system fans (all rotors) should be operational.

NOTE: All system fans are controlled independent of each other. The fan control system may adjust fan speeds for different fans based on increasing/decreasing temperatures in different thermal zones within the chassis.

In the event that system temperatures should continue to increase with the system fans operating at their maximum speed, platform management may begin to throttle bandwidth of either the memory subsystem or the processors or both, in order to keep components from overheating and keep the system operational. Throttling of these subsystems will continue until system temperatures are reduced below preprogrammed limits.

The power supply will be protected against over temperature conditions caused by excessive ambient temperature. In an over-temperature protection condition, the power supply module will shut down.

4.2.1 Fan Speed Control

The baseboard management controller (BMC) supports monitoring and control of fan speed (RPM). Each fan is associated with a fan speed sensor that detects fan failure.

The system fans are divided into fan domains, each of which has a separate fan speed control signal and a separate configurable fan control policy. A fan domain can have a set of temperature and fan sensors associated with it. These are used to determine the current fan domain state.

4.2.2 Programmable Fan PWM Offset

The system provides a BIOS Setup option to boost the system fan speed by a programmable positive offset or a "Max" setting. Setting the programmable offset causes the BMC to add the offset to the fan speeds to which it would otherwise be driving the fans. The Max setting causes the BMC to replace the domain minimum speed with alternate domain minimums that also are programmable through SDRs.

This capability is offered to provide system administrators the option to manually configure fan speeds in instances where the fan speed optimized for a given platform may not be sufficient when a high end add-in adapter is configured into the system. This enables easier usage of the fan speed control to support Intel as well as third party chassis and better support of ambient temperatures higher than 35°C.

4.2.3 Fan Domains

System fan speeds are controlled through pulse width modulation (PWM) signals, which are driven separately for each domain by integrated PWM hardware. Fan speed is changed by adjusting the duty cycle, which is the percentage of time the signal is driven high in each pulse.

The BMCcontrols the average duty cycle of each PWM signal through direct manipulation of the integrated PWM control registers.

The same device may drive multiple PWM signals.

4.2.4 Nominal Fan Speed

A fan domain's nominal fan speed can be configured as static (fixed value) or controlled by the state of one or more associated temperature sensors.

Chenbro customized SDRrecords are used to configure which temperature sensors are associated with which fan control domains and the algorithmic relationship between the temperature and fan speed. Multiple Chenbro customized SDRs can reference or control the same fan control domain; and multiple Chenbro customized SDRs can reference the same temperature sensors.

The PWM duty-cycle value for a domain is computed as a percentage using one or more instances of a stepwise linear algorithm and a clamp algorithm. The transition from one computed nominal fan speed

(PWM value) to another is ramped over time to minimize audible transitions. The ramp rate is configurable by means of the OEM SDR.

Multiple stepwise linear and clamp controls can be defined for each fan domain and used simultaneously.

For each domain, the BMC uses the maximum of the domain's stepwise linear control contributions and the sum of the domain's clamp control contributions to compute the domain's PWM value, except that a stepwise linear instance can be configured to provide the domain maximum.

Hysteresis can be specified to minimize fan speed oscillation and to smooth fan speed transitions. If a Tcontrol SDR record does not contain a hysteresis definition, for example, an SDR adhering to a legacy format, the BMC assumes a hysteresis value of zero.

4.2.5 Thermal and Acoustic Management

This feature refers to enhanced fan management to keep the system optimally cooled while reducing the amount of noise generated by the system fans. Aggressive acoustics standards might require a trade-off between fan speed and system performance parameters that contribute to the cooling requirements and primarily memory bandwidth. The BIOS, BMC, and SDRs work together

to provide control over how this trade-off is determined.

This capability requires the BMC to access temperature sensors on the individual memory DIMMs. Additionally, closed-loop thermal throttling is only supported with buffered DIMMs.

4.2.6 Thermal Sensor Input to Fan Speed Control

The BMC uses various IPMI sensors as input to the fan speed control. Some of the sensors are IPMI models of actual physical sensors whereas some are "virtual" sensors whose values are derived from physical sensors using calculations and/or tabular information.

The following IPMI thermal sensors are used as input to fan speed control:

- Front Panel Temperature Sensor¹
- CPU Margin Sensors^{2,4,5}
- DIMM Thermal Margin Sensors^{2,4}
- Exit Air Temperature Sensor^{1,7,9}
- PCH Temperature Sensor^{3,5}
- Add-In Intel SAS Module Temperature Sensors⁶
- PSU Thermal Sensor^{3,8}
- CPU VRTemperature Sensors⁵
- DIMM VRTemperature Sensors⁵
- BMC Temperature Sensor^{3, 6}
- Global Aggregate Thermal Margin Sensors⁷
- Hot Swap Backplane Temperature Sensors
- I/O Module Temperature Sensor (With option installed)
- Intel®SAS Module (With option installed)

Notes:

- 1. For fan speed control in Chenbro chassis
- 2. Temperature margin from throttling threshold
- 3. Absolute temperature
- 4. PECI value or margin value
- 5. On-die sensor
- 6. On-board sensor
- 7. Virtual sensor
- 8. Available only when PSU has PMBus
- 9. Calculated estimate

A simple modul is shown in the following figure which gives a high level representation of how the fan speed control structure creates the resulting fan speeds

Figure 19.Fan Control Model

4.3 System Fans

Three single rotor 40 x 28mm (Up to 56mm) system fans, and dedicated fans for the installed power supply modules provide the primary airflow for the system.

The system includes three system fans (see Figure17). The fans are held in place by fitting them over mounting pins coming up from the chassis base.

The Fixed Power Supply option of this product comes with a dedicated fan inside the Power Supply Module.

The Power Supply integrates a Power supply Cage with a fixed single rotor 40x25mm fan. It is responsible for airflow through the power supply module. The fans are managed by the fan control system. Should the fan fail, the power supply will shut down.

Figure 20.System Fans

- System fans are NOT hot-swap capable
- Each fan and is designed for tool-less insertion and extraction from the system.
- Each fan and incorporates vibration dampening features used to minimize fan vibration

affects within the chassis

- Fan speed for each fan is controlled by integrated platform management as controlled by the integrated BMC on the server board. As system thermals fluctuate high and low, the integrated BMC firmware will increase and decrease the speeds to specific fans to regulate system thermals.
- Each fan has a tachometer signal for each rotor that allows the Integrated BMC to monitor their status.
- Each fan has a 4-pin wire harness that connects to a matching connector on the server board.

Figure 21.System Fan Connector Locations on Server Board

Table 24.	System	Fan	Connector	Pin-out
	bystem	Iun	connector	I III Out

Pin	Signal Name	Туре	Description
1	Ground	GND	Ground is the power supply ground
2	12V	Power	Power supply 12 V
3	Fan Tach Fan PWM	In Out	FAN_TACH signal is connected to the BMCto monitor the fan speed FAN_PWM signal to control fan speed
4	Fan PWM Fan Tach	Out In	FAN_PWM signal to control fan speed FAN_TACH signal is connected to the BMCto monitor the fan speed

5. System Storage and Peripheral Drive Bay Overview

RM1460X has support for a variety of different storage options, including:

- Up to 4 x 3.5" hot swap SAS or SATA hard disk drives or 2.5" SSDs
- Up to 8 x 2.5" hot swap SAS or SATA drives (hard disk or SSD)
- SATA Slim-line and 2 x 2.5" internal HDD Optical Drive support
- SATA DOM Support on SATA port 4
- Internally mounted Low Profile M.2 Solid State Device (M.2 SSD)

Support for different storage and peripheral options will vary depending on the system model and/or available accessory options installed. This section will provide an overview of each available option.

5.1 Front Mount Drive Support

RM1460X supports either 4x3.5" or 8x2.5" front mounted drives, Both system provide front panel I/O and front control panel support.

Figure 22. 4x3.5" Drive Bay Configuration

Figure 23. 8x2.5" Drive Bay Configuration

5.2 System Fan RVI and Hard Disk Drive Storage Performance

Hard disk drive storage technology, which utilizes the latest state-of-the-art track density architectures, are susceptible to the effects of system fan rotational vibration interference (RVI) within the server system. As system fan speeds increase to their upper limits (>80% PWM or > 19,320 RPM), hard disk drive performance can be impacted.

Chenbro publishes a list of supported hard drives on its Tested Hardware and OS List (THOL). In general, unless identified in the NOTES column in the THOL, all listed hard drives have been tested to meet Chenbro performance targets when the systems fans are operating above 80% PWM and/or the system is operating at or below the platform ambient thermal limit of 35°C (95°F).

The THOL may also list hard drives that are only recommended for use in non-extreme operating environments, where the ambient air is at or below 20°C (68°F) and /or the hard drives are installed in system configurations where the system fans regularly operate below 80% PWM. Hard drives that require these support criteria for a given system will include an "Environmental Limitation" tag and message in the THOL "NOTES" column for that device. Using these drives in the more extreme operating environments puts these devices at higher risk of performance degradation.

Chenbro recommends the following general support guidelines for server systems configured with hard drive storage technology:

 Avoid sustained server operation in extreme operating environments. Doing so will cause the system fans to operate at their upper speed limits and produce higher levels of RVI which could affect hard drive performance.

NOTE: Solid State Drive (SSD) performance is not impacted by the effects of system fan RVI.

5.3 External Hot Swap Drive Carriers

Each SAS/SATA hard disk drive or SSD that interfaces with a backplane is mounted to a hot swap drive carrier. Drive carriers include a latching mechanism used to assist with drive extraction and drive insertion.

Figure 24. Hot Swap Storage Device Carrier Removal

NOTE: To ensure proper system air flow requirements, all front drive bays must be populated with a drive carrier. Drive carriers must be installed with either a drive or supplied drive blank.

There are drive carriers to support 2.5" devices and 3.5" devices. To maintain system thermals, all drive bays must be populated with a drive carrier mounted with a hard disk drive, SSD, or supplied drive blank. Drive blanks used with the 3.5" drive carrier can also be used to mount a 2.5" SSD into it as shown below.

Figure 25. 2.5'' SSD mounted to 3.5'' Drive Tray Secure the 2.5'' HDD with four screws on the bottom of the HDD tray.

Figure 26.3.5"HDD Installation and Removal

NOTE: Due to degraded performance and reliability concerns, the use of the 3.5" drive blank as a 2.5" device bracket is intended to support SSD type storage devices only. Installing a 2.5" hard disk drive into the 3.5" drive blank cannot be supported.

Each drive carrier includes separate LED indicators for drive Activity and drive Status. Light pipes integrated into the drive carrier assembly direct light emitted from LEDs mounted next to each drive connector on the backplane to the drive carrier faceplate, making them visible from the front of the system.

Figure 27. Drive Tray LED Identification

Table 25 Drive Power LED/Activity LED States

LED	Color	Behavior	Condition
Power LED	N/A	Stay off	Hard drive fault has occurred
PowerLED	Blue	Solid on	When power on
	Green	Stay on	When HDD is busy
ACTIVITY LED	Red	Blink	Drive spinning up

NOTE: The drive activity LED is driven by signals coming from the drive itself. Drive vendors may choose to operate the activity LED different from what is described in the table above. Should the activity LED on a given drive type behave differently than what is described, customers should

reference the drive vendor specifications for the specific drive model to determine what the expected drive activity LED operation should be.

5.4 Internal 2.5" HDD Optional

Figure 28.Internal 2.5" HDD Installation

①.Engage two embossed pin on HDD carrier into the side dimples on the 2.5" HDD.

②.Carefully push down the other side of 2.5" HDD until another two embossed pins in its position.

5.5 Storage Backplane Optional

RM14604 has support for two backplane options.

- 4 x 3.5" Mini SAS HD backplane
- 4 x 3.5" SAS/SATA backplane
- 8 x 2.5"Mini SAS HD backplane

All available backplane options mount directly to the back of the drive bay as shown in the following illustration.

Figure 29. Backplane Installation-RM14604

- ①.Install backplane vertically into the chassis to align the screw holes with the hooks.
- ②.Secure the backplane with three screws as shown.

Figure 30. Backplane Installation-RM14608

①.Install backplane vertically into the chassis ,ensure that alianment screw holes and hooks match up.

②.Secure the backplane with two screws as shown.

All available SAS/SATA compatible backplanes include the following common features:

- 12 Gb SAS and 6Gb SAS/SATA
- 29-pin SFF-8680 12 Gb rated drive interface connectors, providing both power and I/O signals to attached devices
- Hot swap support for SAS/SATA devices
- I2C interface from a 3-pin connector for device status communication to the BMC over slave SMBus
- LEDs to indicate drive activity and status for each attached device

5.5.1 I2CFunctionality

The microcontroller has a master/slave I2C connection to the server board BMC. The microcontroller is not an IPMB compliant device. The BMC will generate SEL events by monitoring registers on the HSBP microcontroller for DRIVE PRESENCE, FAULT, and RAID REBUILD in progress.

5.5.2 4 x 3.5" Drive Hot-Swap Backplane Overview

The 3.5" drive system SKUs within the product family will ship with a 4x drive backplane capable of supporting 12 Gb/sec SAS drives. Both hard disks and Solid State Drives (SSDs) can be supported within a common backplane. Each backplane can support SAS devices. However, SATA and mixing of SATA and SAS devices within a common hot swap backplane are not supported. Supported devices are dependent on the type of host bus controller driving the backplane.

The front side of the backplane includes 4 x 29-pin drive interface connectors, each capable of supporting 12 Gb SAS or 6 Gb SAS/SATA. The connectors are numbered 0 thru 3. Signals for all four drive connectors are routed to a single multi-port mini-SAS HD connector or four SATA host connector on the back side of the backplane.

5.5.2.1 12G Mini SAS HD 4 Port Backplane

Specification				
Host Interface	Mini SAS HD RA			
HDD Interface	SAS			
Hot-Swap	Yes, allows user to on line replace Hard Disk Drive			
	LED indicates Hard Disk Drive status			
Display	Power LED – Blue (When HDD is present)			
	Access LED – Green (When HDD is busy)			
	Error LED – Red (When HDD is error)			
Environment Monitor	Temperature senor detect(U2,U3)			
	1.SAS29P *4			
	2.Mini-SAS HD RA*1			
0	3.Standard 4P Power connector *2 for +5V, +12V			
Connectors	from power supply			
	4. PIN Header 2mm (1x3) *2			
	5. I2C Connector *1			
Dimension	426.62(L) x 26.8(W) x 2.4(H) mm			
Material	FR4 4 layer			

Figure 31. 12G Mini SAS HD 4 Port Backplane- front view

Label	Description
A	HDD_0
В	HDD_1
С	HDD_2
D	HDD_3

On the backside of the backplane are several connectors. The following illustration identifies each.

Figure 32. 12G Mini SAS HD 4 Port Backplane - rear view

Label	Description
А	Power connector
В	SAS/SATA Ports 0-3 Mini-SAS HD cable connector
С	I2C connector

A – Power Connector – The backplane includes a 2x2 connector supplying power to the backplane. Power is routed to the backplane via a power cable harness from the Power Supply Modules.

B – Multi-port Mini-SAS Cable Connector – The backplane includes one multi-port mini-SAS cable connector providing data signals for four SAS/SATA drives on the backplane. A cable can be routed from matching connectors on the server board or add-in SAS/SATA RAID cards.

C – I2C Cable Connector – The backplane includes a 1x3 cable connector used as a management interface to the server board.

Connector	Pin Number	Pin Definition	Input/output	Description	Drawing
Power	1	12V	Input	Power +12V	
Connector	2	GND	GND	Power GND	
	3	GND	GND	Power GND	0000
	4	5V	Input	Power +5V	
HDD	1-2	HDD Mode	Input	HDD direct access	
Access				decode	- e
select	2-3	SGPIO Mode	Input	Through SGPIO	
				signal decoder	
HDD IN	S1	GND	GND	GND	
Connector	S2	TP	Input	Transmitter data (+)	
	S3	TN	Input	Transmitter data (-)	
	S4	GND	GND	GND	S8
	S5	RN	Output	Receiver data (-)	S'14
	S6	RP	Output	Receiver data (+)	20
	S7	GND	GND	GND	THE REAL PROPERTY OF
	S8	NC	NC	NC	P15
	S9	NC	NC	NC	57 P1
	S10	NC	NC	NC	51
	S11	NC	NC	NC	
	S12	NC	NC	NC	
	S13	NC	NC	NC	
	S14	NC	NC	NC	
	P1	NC	NC	NC	
	P2	NC	NC	NC	
	P3	NC	NC	NC	
	P4	GND	GND	GND	
	P5	Plug-in	Input	HDD Plug-in	
		detection		detection	
	P6	GND	GND	GND	
	P7	5V Pre-Charge	Input	Pre-Charge +5V	

Table 27.Connector Pin-out -4-port Mini SAS HD Backplane

P85VPowerPower +5VP95VPowerPower +5VP10GNDGNDGNDP11NCNCNCP12GNDGNDGNDP1312VInputPre-charge +12VP1412VRowerPower +12V	
P95VPowerPower +5VP10GNDGNDGNDP11NCNCNCP12GNDGNDGNDP1312VInputPre-charge +12VPre-ChargePre-chargePre-charge +12V	
P10GNDGNDGNDP11NCNCNCP12GNDGNDGNDP1312VInputPre-charge +12VPre-ChargePre-chargePre-charge +12V	
P11 NC NC P12 GND GND P13 12V Input Pre-Charge Pre-charge +12V	
P12 GND GND GND P13 12V Input Pre-charge +12V Pre-Charge Pre-charge Pre-charge +12V	
P13 12V Input Pre-charge +12V Pre-Charge P0wer +12V	
Pre-Charge	
$P14$ $12V$ Power Power $\pm 12V$	
P15 12V Power Power +12V	
Mini SAS A1 SGPIO SCKA Input SPGIO Clock	D1- [1-]
HD A2 GND GND GND	
Connector A3 GND GND GND	Í Anna Í
A4 RP1 Input Receiver data 1 (+)	
A5 RN1 Input Receiver data 1 (-)	
A6 GND GND GND	
A7 RP3 Input Receiver data 3 (+)	
A8 RN3 Input Receiver data 3 (-)	B1
A9 GND GND GND	
B1 SGPIO SLDA Output SPGIO SLoad	
B2 GND GND GND	
B3 GND GND GND	
B4 RP0 Input Receiver data 0 (+)	
B5 RN0 Input Receiver data 0 (-)	
B6 GND GND GND	
B7 RP2 Input Receiver data 2 (+)	
B8 RN2 Input Receiver data 2 (-)	
B9 GND GND GND	
C1 GND GND GND	
C2 SPGIO SDOA Output SPGIO data	
C3 GND GND GND	
C4 TP1 Output Transmitter data 1(+)	
C5 TN1 Output Transmitter data 1(-)	
C6 GND GND GND	
C7 TP3 Output Transmitter data 3(+)	
C8 TN3 Output Transmitter data 3(-)	
C9 GND GND GND	
D1 NC NA NA	
D2 GND GND GND	
D3 GND GND GND	
D4 TP0 Output Transmitter data 0 (+)	

	D5	TN0	Output	Transmitter data 0 (-)	
	D6	GND	GND	GND	
	D7	TP2	Output	Transmitter data 2 (+)	
	D8	TN2	Output	Transmitter data 2 (-)	
	D9	GND	GND	GND	
I2C	1	SDA	I/O	I2C Data Signal	
Connector				(Internal pull high	
				+5V)	1
	2	GND	GND	GND	
	3	SCL	Input	I2C Clock Signal	. 5
				(Internal pull high	
				+5V)	
	4	ADD0	Input	I2C address A0	
				Signal	
	5	ADD1	Input	I2C address A0	
				Signal	

5.5.2.2 12G SAS 4 Port Backplane

Table 28.12G SAS 4 Port Baackplane

	Specification	
Host Interface	SATA/SAS	
HDD Interface	SAS	
Hot-Swap	Yes, allows user to on line replace Hard Disk Drive	
	LED indicates Hard Disk Drive status	
Dianlay	Power LED – Blue (When HDD is present)	
Display	Access LED – Green (When HDD is busy)	
	Error LED – Red (When HDD is error)	
Cooler	NA	
	1.SAS29P *4	
	2.SATA Host Connector *4	
Commontone	3.Standard 4P Power connector *2 for +5V, +12V from power	
Connectors	supply	
	4.SGPIO Pin header 2.54mm (2x5) *1	
	5. Pin header 2.00mm (1x3) *2	
Dimension	426.62(L) x 26.8(W) x 2.4(H) mm	
Material	FR4 2 layer	

Figure 33. 12G SAS 4 Port Backplane - front view

Label	Description
A	HDD_0
В	HDD_1
С	HDD_2
D	HDD_3

On the backside of the backplane are several connectors. The following illustration identifies each.

Figure 34. 12G SAS 4 Port Backplane - rear view

Label	Description	
А	Power connector	
В	SAS/SATA Host connector	
С	I2C connector	

A – Power Connector – The backplane includes a 2x2 connector supplying power to the backplane. Power is routed to the backplane via a power cable harness from the Power Supply Modules.

B – SAS/SATA Host Connector – The backplane includes four SAS/SATA Host Connector providing data signals for four SAS drives on the backplane. A cable can be routed from matching connectors on the server board or add-in SAS/SATA RAID cards.

C – I2C Cable Connector – The backplane includes a 1x3 cable connector used as a management interface to the server board.

Table 29.Connector Pin-out -	- SAS	Backplane
------------------------------	-------	-----------

Connector	Pin	Pin	Input/output	Description	Drawing		
	Number	Definition					
Power Connector							
HDD Access select		The same as Table 28					

HDD IN		The sa	me as Table 28					
Connector		P15 S1						
					S8 514			
I2C		The sa	me as Table 28					
Connector								
HOST IN	1	GND	GND	GND				
Connector	2	RP	Output	Receiver data (+)	F Or			
	3	RN	Output	Receiver data (-)				
	4	GND	GND	GND	ŏ			
	5	TN	Input	Transmitter data	0 N			
				(-)	<u> </u>			
	6	TP	Input	Transmitter data				
				(+)				
	7	GND	GND	GND				

	Pin NO.	Descriptions	Pin NO.	Descriptions	Drawing
SGPIO signal	1	SGPIO DATA INPUT	2	NC	1 🗆 🗆 2
Connector	3	SGPIO DATA OUTPUT	4	GND	
	5	GND	6	SGPIO LOAD	
	7	CONTROL TYPE	8	SGPIO CLOCK	
	9	NC	10	KEY PIN	9 [1] 10

5.5.2.3 12G Mini SAS HD 8 Port Backplane

Table 30.12G Mini SAS HD 8 Port Backplane

Specification				
Host Interface Mini SAS HD				
HDD Interface	SAS			
Hot-Swap	Yes, allows user to on line replace Hard Disk Drive			

	LED indicates Hard Disk Drive status
Dianlay	Power LED – Blue (When HDD is present)
Display	Access LED – Green (When HDD is busy)
	Error LED – Red (When HDD is error)
Environment Monitor	Temperature senor detect(U03,U04)
	1.SAS29P *8
	2.Mini-SAS HD Connector*2
Connectors	3.Standard 4P Power connector *8 for +5V, +12V
Connectors	from power supply *2
	4. PIN Header 2mm (1x3) *4
	5. I2C Connector 2.5mm(1x5)*1
Dimension	426.4(L) x 25.5(W) x 2.4(H) mm
Material	FR4 6 laver

Figure 35. 12G Mini SAS HD 8 Port Backplane- front view

Label	Description
А	HDD_0
В	HDD_1
С	HDD_2
D	HDD_3
E	HDD_4
F	HDD_5
G	HDD_6
Н	HDD_7

On the backside of the backplane are several connectors. The following illustration identifies each.

Figure 36. 12G Mini SAS HD 8 Port Backplane - rear view

Label	Description			
А	Power connector			
В	Mini-SAS HD cable connector			
С	I2C connector			

A – Power Connector – The backplane includes a 2x2 connector supplying power to the backplane.

Power is routed to the backplane via a power cable harness from the Power Supply Modules.

B – Multi-port Mini-SAS Cable Connector – The backplane includes one multi-port mini-SAS cable connector providing data signals for four SAS/SATA drives on the backplane. A cable can be routed from matching connectors on the server board or add-in SAS/SATA RAID cards.

C – I2C Cable Connector – The backplane includes a 1x3 cable connector used as a management interface to the server board.

Connector	Pin Number	Pin Definition	Input/output	Description	Drawing
Power	1	12V	Input	Power +12V	
Connector	2	GND	GND	Power GND	
	3	GND	GND	Power GND	
	4	5V	Input	Power +5V	
HDD	1-2	HDD Mode	Input	HDD direct access	
Access				decode	3 7
select	2-3	SGPIO Mode	Input	Through SGPIO	
				signal decoder	
HDD IN	S1	GND	GND	GND	
Connector	S2	TP	Input	Transmitter data (+)	
	S3	TN	Input	Transmitter data (-)	
	S4	GND	GND	GND	S8
	S5	RN	Output	Receiver data (-)	S'14
	S6	RP	Output	Receiver data (+)	20
	S7	GND	GND	GND	and the second se
	S8	NC	NC	NC	P15
	S9	NC	NC	NC	57 P1
	S10	NC	NC	NC	51
	S11	NC	NC	NC	
	S12	NC	NC	NC	
	S13	NC	NC	NC	
	S14	NC	NC	NC	
	P1	NC	NC	NC	
	P2	NC	NC	NC	
	P3	NC	NC	NC	
	P4	GND	GND	GND	
	P5	Plug-in	Input	HDD Plug-in	
		detection		detection	
	P6	GND	GND	GND	
	P7	5V Pre-Charge	Input	Pre-Charge +5V	
	P8	5V	Power	Power +5V	

Table 31.Connector Pin-out -8-port Mini SAS HD Backplane

	P9	5V	Power	Power +5V	
	P10	GND	GND	GND	
	P11	NC	NC	NC	
	P12	GND	GND	GND	
	P13	12V	Input	Pre-charge +12V	
		Pre-Charge			
	P14	12V	Power	Power +12V	
	P15	12V	Power	Power +12V	
Mini SAS	A1	SGPIO SCKA	Input	SPGIO Clock	01- [1-
HD	A2	GND	GND	GND	
Connector	A3	GND	GND	GND	Ĩ Anna I
	A4	RP1	Input	Receiver data 1 (+)	0
	A5	RN1	Input	Receiver data 1 (-)	
	A6	GND	GND	GND	
	A7	RP3	Input	Receiver data 3 (+)	
	A8	RN3	Input	Receiver data 3 (-)	B1
	A9	GND	GND	GND	
	B1	SGPIO SLDA	Output	SPGIO SLoad	
	B2	GND	GND	GND	
	B3	GND	GND	GND	
	B4	RP0	Input	Receiver data 0 (+)	
	B5	RN0	Input	Receiver data 0 (-)	
	B6	GND	GND	GND	
	B7	RP2	Input	Receiver data 2 (+)	
	B8	RN2	Input	Receiver data 2 (-)	
	B9	GND	GND	GND	
	C1	GND	GND	GND	
	C2	SPGIO SDOA	Output	SPGIO data	
	C3	GND	GND	GND	
	C4	TP1	Output	Transmitter data 1(+)	
	C5	TN1	Output	Transmitter data 1(-)	
	C6	GND	GND	GND	
	C7	TP3	Output	Transmitter data 3(+)	
	C8	TN3	Output	Transmitter data 3(-)	
	C9	GND	GND	GND	
	D1	NC	NA	NA	
	D2	GND	GND	GND	
	D3	GND	GND	GND	
	D4	TP0	Output	Transmitter data 0 (+)	
	D5	TN0	Output	Transmitter data 0 (-)	

	D6	GND	GND	GND	
	D7	TP2	Output	Transmitter data 2 (+)	
	D8	TN2	Output	Transmitter data 2 (-)	
	D9	GND	GND	GND	
I2C	1	SDA	I/O	I2C Data Signal	
Connector				(Internal pull high	
(JC01)				+5V)	1
	2	GND	GND	GND	
	3	SCL	Input	I2C Clock Signal	• 5
				(Internal pull high	
				+5V)	
	4	ADD0	Input	I2C address A0	
				Signal	
	5	ADD1	Input	I2C address A0	
				Signal	

5.6 SATA DOM Support

The SATA-4 connector on the server board is designed to be compatible with SATA DOM devices.

Pin	10	Signal Name
MH1	PWR	GND
1	GND	GND
2	I	SATA_TX_P
3	I	SATA_TX_N
4	GND	GND
5	0	SATA_RX_N
6	0	SATA_RX_P
7	PWR	GND
MH2	PWR	P5V(For Apacer* SATADOM) GND (For SATA)

6. Front Control Panel and I/O Panel Overview

RM14604/08 includes a Control Panel and I/O Panel on the front of the system.

6.1 I/O Panel Features

Figure 37. Front I/O Panel Features

USB 2.0/3.0 Ports –The front I/O panel includes two USB 2.0/3.0 ports. The USB ports are cabled to a Blue 2x5 connector on the server board labeled "Internal_USB3.0".

** **NOTE:** Due to signal strength limits associated with USB 3.0 ports cabled to a front panel, some marginally compliant USB 3.0 devices may not be supported from these ports. In addition, server systems based on the Intel®Server Board S1200SP cannot be USB 3.0 certified with USB 3.0 ports cabled to a front panel.

6.2 Control Panel Features

Figure 38. Front Panel Control and Buttons

The system includes a front panel that provides button system controls and LED indicators for several system features. This section will provide a description for each front control panel feature.

Label	Description			
А	USB 2.0/3.0 port			
В	ID Switch			
С	System Reset Button			
D	LAN1,LAN2 Activity LED			

Table 33. Front Control Panel Buttons And Indicators

Е	HDD Activity LED
F	System Status LED
G	Power on Button and LED

6.2.1 LED Board And System Status LED

Figure 39.LED Board

Table 34.LED Board Specification

Specification				
Display	LED indicates status Power LED – Blue (When power on) UID LED – Blue (when locate this machine) Alarm LED – Red (when signal is error) HDD LED – Yellow (when HDD is busy) LAN1 、LAN2 LED – Green (when internet is busy)			
Connectors	Pin header 2.0mm (2x15) *1			
Dimension	150(L)x46(W)x1.6(H)mm			
Material	FR4 2 layer			

Table 35.LED Board System Connector(J1A1)

Pin NO.	Descriptions	Pin NO.	Descriptions	1 _ 2
1	POWER LED +	2	VCC (3.3V)	
3	KEY PIN	4	UID LED +	
5	POWER LED -	6	UID LED -	
7	HDD LED +	8	NC	
9	HDD LED -	10	ALARM_LED	
11	POWER SW +	12	LAN1 LED +	
13	GND	14	LAN1 LED -	
15	RESET SW +	16	I2C_SDA	
17	GND	18	I2C_SCL	
19	UID SW +	20	CHAS_INTR	
21	NC	22	LAN2 LED +	
23	NC	24	LAN2 LED -	
25	KEY PIN	26	KEY PIN	
27	NC	28	NC	
29	NC	30	NC	29 💷 30

NOTE: The Status LED is controlled by the BMC but the BIOS informs the BMC of the state to which the Status LED should be set.

The BMC-detected states are included in the LED states. For fault states that are monitored by the BMC sensors, the contribution to the LED state follows the associated sensor state, with priority

given to the most critical asserted state.

When the server is powered down (transitions to the DC-off state), the BMC is still on standby power and retains the sensor and front panel status LED state established before the power-down event.

When AC power is first applied to the system, the status LED turns solid blue and then immediately changes to extinguish to indicate that the power is failure.

7. PCIe* Riser Card Support

The system includes a riser card slot on the server board. This section will provide an overview and description of the server board features and architecture supporting it.

NOTE: <u>The riser card slot is specifically designed to support riser cards only.</u> Attempting to install a PCIe* add-in card directly into a riser card slot on the server board may damage the server board, the add-in card, or both.

The system supports a single slot PCIe^{*} x16 (16 lanes, x16 slot) riser card. The riser card is mounted to a bracket assembly which is inserted into the riser card slot on the server board.

Figure 40. Add-in Card Support

The riser card assembly has support for a single full height, half-length PCIe* add-in card.

NOTE: Add-in cards that exceed the PCI specification for ½ length PCI add-in cards (167.65mm or 6.6in) may interfere with other installed devices on the server board.

Figure 41. Riser Card Assembly

8. Intel[®] I/O Module Support

To broaden the standard on-board feature set, the server board provides support for one of several available Intel® I/O Module options. The I/O module attaches to a high density 80-pin connector on the server board (labeled "IO_Module") and is supported by x8 PCIe Gen3 signals from the IIO module of the CPU 1 processor.

Figure 42. Intel ® I/O Module Placement

Supported I/O modules include:

Intel Product Code	Description				
Intel®I/O Module AXX10GBTWLIOM3	Dual RJ-45 port 10GBASE-T I/O expansion module, based on Intel®Ethernet Controller X540				
Intel®I/O Module AXX10GBNIAIOM	Dual SFP+ port 10GbEIO module based on Intel®82599 10 Gigabit Ethernet Controller				
Intel®I/O Module AXX4P1GBPWLIOM	Quad port 1GbE I/O expansion module based on Intel®Ethernet Controller I350				

9. Basic and Advanced Server Management Features

The integrated BMC has support for basic and advanced server management features. Basic management features are available by default. Advanced management features are enabled with the addition of an optionally installed Remote Management Module 4 Lite (RMM4 Lite) key.

Intel Product Code	Description	Kit Contents	Benefits
AXXRMM4LITE	Intel®Remote Management Module 4 Lite	RMM4 Lite Activation Key	Enables KVM & media redirection

Table 37. Intel®Remote Management Module 4 (RMM4) Options

When the BMC FW initializes, it attempts to access the Intel®RMM4 lite. If the attempt to access Intel®RMM4 lite is successful, then the BMC activates the Advanced features.

The following table identifies both Basic and Advanced server management features.

Feature	Basic	Advanced w/RMM4 Lite Key
IPMI 2.0 Feature Support	Х	X
In-circuit BMCFirmware Update	Х	X
FRB 2	Х	X
Chassis Intrusion Detection	Х	X
Fan Redundancy Monitoring	Х	X
Hot-Swap Fan Support	Х	X
Acoustic Management	Х	х
Diagnostic Beep Code Support	Х	х
Power State Retention	Х	Х
ARP/DHCP Support	Х	Х
PECI Thermal Management Support	Х	Х
E-mail Alerting	Х	Х
Embedded Web Server	Х	Х
SSH Support	Х	Х
Integrated KVM		Х
Integrated Remote Media Redirection		Х
Lightweight Directory Access Protocol (LDAP)	х	х
Intel®Intelligent Power Node Manager Support	х	x
SMASH CLP	Х	x

Table 38. Basic and Advanced Server Management Features Overview

9.1 IPMI 2.0 Features

- Baseboard management controller (BMC)
- IPMI Watchdog timer
- Messaging support, including command bridging and user/session support

- Chassis device functionality, including power/reset control and BIOS boot flags support
- Event receiver device: The BMC receives and processes events from other platform subsystems.
- Field Replaceable Unit (FRU) inventory device functionality: The BMC supports access to system FRU devices using IPMI FRU commands.
- System Event Log (SEL) device functionality: The BMC supports and provides access to a SEL.
- Sensor Data Record (SDR) repository device functionality: The BMC supports storage and access of system SDRs.
- Sensor device and sensor scanning/monitoring: The BMC provides IPMI management of sensors. It polls sensors to monitor and report system health.
- IPMI interfaces
 - Host interfaces including system management software (SMS) with receive message queue support, and server management mode (SMM)
 - IPMB interface
 - LAN interface that supports the IPMI-over-LAN protocol Remote Management Control Protocol(RMCP, RMCP+)
- Serial-over-LAN (SOL)
- ACPI state synchronization: The BMC tracks ACPI state changes that are provided by the BIOS.
- BMC self-test: The BMC performs initialization and run-time self-tests and makes results available to external entities.

Please refer to the Intelligent Platform Management Interface Specification Second Generation v2.0 for more details.

9.2 Non-IPMI Features

The BMC supports the following non-IPMI features. This list does not preclude support for future enhancements or additions.

- In-circuit BMC firmware update
- Fault resilient booting (FRB): FRB2 is supported by the watchdog timer functionality.
- Chassis intrusion detection
- Basic fan speed control using Chenbro customized 2 SDRs
- Fan redundancy monitoring and support
- Power supply redundancy monitoring and support
- Hot-swap fan support
- Acoustic management: Support for multiple fan profiles
- Signal testing support: The BMCprovides test commands for setting and getting platform signal states.
- The BMCgenerates diagnostic beep codes for fault conditions.
- System GUID storage and retrieval
- Front panel management: The BMC controls the system status LED and chassis ID LED. It supports secure lockout of certain front panel functionality and monitors button presses. The chassis ID LED is turned on using a front panel button or a command.
- Power state retention
- Power fault analysis

- Intel® Light-Guided Diagnostics
- Power unit management: Support for power unit sensor. The BMC handles power-good dropout conditions.
- DIMM temperature monitoring: New sensors and improved acoustic management using closed-loop fan control algorithm taking into account DIMM temperature readings.
- Address Resolution Protocol (ARP): The BMC sends and responds to ARPs (supported on embedded NICs).
- Dynamic Host Configuration Protocol (DHCP): The BMC performs DHCP (supported on embedded NICs).
- Platform environment control interface (PECI) thermal management support
- E-mail alerting
- Embedded web server:
- Integrated KVM
- Integrated Remote Media Redirection
- Lightweight Directory Access Protocol (LDAP) support
- Intel® Intelligent Power Node Manager support

On the server board the Intel®RMM4 Lite key is installed at the following location.

Figure 43. Intel® RMM4 Lite Activation Key Lnstallation

9.2.1 Dedicated Management Port

The server board includes a dedicated 1GbE RJ45 Management Port. The management port is active with or without the RMM4 Lite key installed.

9.2.2 Embedded Web Server

BMC Base manageability provides an embedded web server and an OEM-customizable web GUI which exposes the manageability features of the BMC base feature set. It is supported over all on-board NICs that have management connectivity to the BMC as well as an optional dedicated add-in management NIC. At least two concurrent web sessions from up to two different users is supported. The embedded web user interface shall support the following client web browsers:

- Microsoft Internet Explorer 9.0*
- Microsoft Internet Explorer 10.0*
- Mozilla Firefox 24*
- Mozilla Firefox 25*

The embedded web user interface supports strong security (authentication, encryption, and firewall support) since it enables remote server configuration and control. The user interface presented by the embedded web user interface, shall authenticate the user before allowing a web session to be initiated. Encryption using 128-bit SSL is supported. User authentication is based on user id and password.

The GUI presented by the embedded web server authenticates the user before allowing a web session to be initiated. It presents all functions to all users but grays-out those functions that the user does not have privilege to execute. For example, if a user does not have privilege to power control, then the item shall be displayed in grey-out font in that user's UI display. The web GUI also provides a launch point for some of the advanced features, such as KVM and media redirection. These features are grayed out in the GUI unless the system has been updated to support these advanced features. The embedded web server only displays US English or Chinese language output.

Additional features supported by the web GUI includes:

- Presents all the Basic features to the users
- Power on/off/reset the server and view current power state
- Displays BIOS, BMC, MEand SDRversion information
- Display overall system health.
- Configuration of various IPMI over LAN parameters for both IPV4 and IPV6
- Configuration of alerting (SNMP and SMTP)
- Display system asset information for the product, board, and chassis.
- Display of BMC-owned sensors (name, status, current reading, enabled thresholds), including color-code status of sensors.
- Provides ability to filter sensors based on sensor type (Voltage, Temperature, Fan and Power supply related)
- Automatic refresh of sensor data with a configurable refresh rate
- On-line help
- Display/clear SEL (display is in easily understandable human readable format)
- Supports major industry-standard browsers (Microsoft Internet Explorer* and Mozilla Firefox*)
- The GUI session automatically times-out after a user-configurable inactivity period. By default, this inactivity period is 30 minutes.
- Embedded Platform Debug feature Allow the user to initiate a "debug dump" to a file that can be sent to Intel for debug purposes.
- Virtual Front Panel. The Virtual Front Panel provides the same functionality as the local front panel. The displayed LEDs match the current state of the local panel LEDs. The displayed buttons (for example, power button) can be used in the same manner as the local buttons.
- Display of ME sensor data. Only sensors that have associated SDRs loaded will be displayed.
- Ability to save the SEL to a file
- Ability to force HTTPS connectivity for greater security. This is provided through a configuration option in the UI.
- Display of processor and memory information as is available over IPMI over LAN.
- Ability to get and set Node Manager (NM) power policies

- Display of power consumed by the server
- Ability to view and configure VLAN settings
- Warn user the reconfiguration of IP address will cause disconnect.
- Capability to block logins for a period of time after several consecutive failed login attempts. The lock-out period and the number of failed logins that initiates the lock-out period are configurable by the user.
- Server Power Control Ability to force into Setup on a reset
- System POST results The web server provides the system's Power-On Self-Test (POST) sequence for the previous two boot cycles, including timestamps. The timestamps may be viewed in relative to the start of POST or the previous POST code.
- Customizable ports The web server provides the ability to customize the port numbers used for SMASH, http, https, KVM, secure KVM, remote media, and secure remote media.

For additional information, reference the Intel®Remote Management Module 4 and Integrated BMC Web Console Users Guide.

9.2.3 Advanced Management Feature Support (RMM4 Lite)

The integrated baseboard management controller has support for advanced management features which are enabled when an optional Intel®Remote Management Module 4 Lite (RMM4 Lite) is installed. The Intel RMM4 add-on offers convenient, remote KVM access and control through LAN and internet. It captures, digitizes, and compresses video and transmits it with keyboard and mouse signals to and from a remote computer. Remote access and control software runs in the integrated baseboard management controller, utilizing expanded capabilities enabled by the Intel RMM4 hardware.

Key Features of the RMM4 add-on are:

- KVM redirection from either the dedicated management NIC or the server board NICs used for management traffic; up to two KVM sessions
- Media Redirection The media redirection feature is intended to allow system administrators orusers to mount a remote IDE or USB CDROM, floppy drive, or a USB flash disk as a remote device to the server. Once mounted, the remote device appears just like a local device to the server allowing system administrators or users to install software (including operating systems), copy files, update BIOS, or boot the server from this device.
- KVM Automatically senses video resolution for best possible screen capture, high performancemouse tracking and synchronization. It allows remote viewing and configuration in pre-boot POST and BIOS setup.

9.2.3.1 Keyboard, Video, Mouse (KVM) Redirection

The BMC firmware supports keyboard, video, and mouse redirection (KVM) over LAN. This feature is available remotely from the embedded web server as a Java applet. This feature is only enabled when the Intel®RMM4 lite is present. The client system must have a Java Runtime Environment (JRE) version 6.0 or later to run the KVM or media redirection applets.

The BMC supports an embedded KVM application (Remote Console) that can be launched from the embedded web server from a remote console. USB1.1 or USB 2.0 based mouse and keyboard redirection are supported. It is also possible to use the KVM-redirection (KVM-r) session concurrently with media-redirection (media-r). This feature allows a user to interactively use the keyboard, video, and mouse (KVM) functions of the remote server as if the user were physically at the managed server. KVM redirection console supports the following keyboard layouts: English, Dutch, French, German, Italian, Russian, and Spanish.

KVM redirection includes a "soft keyboard" function. The "soft keyboard" is used to simulate an entire keyboard that is connected to the remote system. The "soft keyboard" functionality supports the following layouts: English, Dutch, French, German, Italian, Russian, and Spanish.

The KVM-redirection feature automatically senses video resolution for best possible screen capture and provides high-performance mouse tracking and synchronization. It allows remote viewing and configuration in pre-boot POST and BIOS setup, once BIOS has initialized video.

Other attributes of this feature include:

- Encryption of the redirected screen, keyboard, and mouse
- Compression of the redirected screen.
- Ability to select a mouse configuration based on the OS type.
- Supports user definable keyboard macros.

KVM redirection feature supports the following resolutions and refresh rates:

- 640x480 at 60Hz, 72Hz, 75Hz, 85Hz, 100Hz
- 800x600 at 60Hz, 72Hz, 75Hz, 85Hz
- 1024x768 at 60Hx, 72Hz, 75Hz, 85Hz
- 1280x960 at 60Hz
- 1280x1024 at 60Hz
- 1600x1200 at 60Hz
- 1920x1080 (1080p),
- 1920x1200 (WUXGA)
- 1650x1080 (WSXGA+)

9.2.3.2 Remote Console

The Remote Console is the redirected screen, keyboard and mouse of the remote host system. To use the Remote Console window of your managed host system, the browser must include a Java* Runtime Environment plug-in. If the browser has no Java support, such as with a small handheld device, the user can maintain the remote host system using the administration forms displayed by the browser.

The Remote Console window is a Java Applet that establishes TCP connections to the BMC. The protocol that is run over these connections is a unique KVM protocol and not HTTP or HTTPS. This protocol uses ports #7578 for KVM, #5120 for CDROM media redirection, and #5123 for Floppy/USB media redirection. When encryption is enabled, the protocol uses ports #7582 for KVM, #5124 for CDROM media redirection, and #5127 for Floppy/USB media redirection. The local network environment must permit these connections to be made, that is, the firewall and, in case of a private internal network, the NAT (Network Address Translation) settings have to be configured accordingly.

9.2.3.3 Performance

The remote display accurately represents the local display. The feature adapts to changes to the video resolution of the local display and continues to work smoothly when the system transitions from graphics to text or vice-versa. The responsiveness may be slightly delayed depending on the bandwidth and latency of the network.

Enabling KVM and/or media encryption will degrade performance. Enabling video compression provides the fastest response while disabling compression provides better video quality.

For the best possible KVM performance, a 2Mb/sec link or higher is recommended.

The redirection of KVM over IP is performed in parallel with the local KVM without affecting the local KVM operation.

9.2.3.4 Security

The KVM redirection feature supports multiple encryption algorithms, including RC4 and AES. The actual algorithm that is used is negotiated with the client based on the client's capabilities.

9.2.3.5 Availability

The remote KVM session is available even when the server is powered-off (in stand-by mode). No re-start of the remote KVM session shall be required during a server reset or power on/off. A BMC reset (for example, due to a BMC Watchdog initiated reset or BMC reset after BMC FW update) will require the session to be re- established.

KVM sessions persist across system reset, but not across an AC power loss.

9.2.3.6 Usage

As the server is powered up, the remote KVM session displays the complete BIOS boot process. The user is able interact with BIOS setup, change and save settings as well as enter and interact with option ROM configuration screens.

At least two concurrent remote KVM sessions are supported. It is possible for at least two different users to connect to same server and start remote KVM sessions.

9.2.3.7 Force-enter BIOS Setup

KVM redirection can present an option to force-enter BIOS Setup. This enables the system to enter F2 setup while booting which is often missed by the time the remote console redirects the video.

9.2.3.8 Media Redirection

The embedded web server provides a Java applet to enable remote media redirection. This may be used in conjunction with the remote KVM feature, or as a standalone applet.

The media redirection feature is intended to allow system administrators or users to mount a remote IDE or USB CD-ROM, floppy drive, or a USB flash disk as a remote device to the server. Once mounted, the remote device appears just like a local device to the server, allowing system administrators or users to install software (including operating systems), copy files, update BIOS, and so on, or boot the server from this device.

TPS The following capabilities are supported:

- The operation of remotely mounted devices is independent of the local devices on the server. Both remote and local devices are useable in parallel.
- Either IDE (CD-ROM, floppy) or USB devices can be mounted as a remote device to the server.
- It is possible to boot all supported operating systems from the remotely mounted device and to boot from disk IMAGE (*.IMG) and CD-ROM or DVD-ROM ISO files. See the Tested/supported Operating System List (Table 3) for more information.
- Media redirection supports redirection for both a virtual CD device and a virtual Floppy/USB device concurrently. The CD device may be either a local CD drive or else an ISO image file; the Floppy/USB device may be a local Floppy drive, a local USB device, or a disk image file.

- The media redirection feature supports multiple encryption algorithms, including RC4 and AES. The actual algorithm that is used is negotiated with the client based on the client's capabilities.
- A remote media session is maintained even when the server is powered-off (in standby mode). No restart of the remote media session is required during a server reset or power on/off. An BMC reset (for example, due to an BMC reset after BMC FW update) will require the session to be re-established
- The mounted device is visible to (and useable by) managed system's OS and BIOS in both pre-boot and post-boot states.
- The mounted device shows up in the BIOS boot order and it is possible to change the BIOS boot order to boot from this remote device.
- It is possible to install an operating system on a bare metal server (no OS present) using the remotely mounted device. This may also require the use of KVM-r to configure the OS during install.

USB storage devices will appear as floppy disks over media redirection. This allows for the installation of device drivers during OS installation.

If either a virtual IDE or virtual floppy device is remotely attached during system boot, both the virtual IDE and virtual floppy are presented as bootable devices. It is not possible to present only a single-mounted device type to the system BIOS.

Availability

The default inactivity timeout is 30 minutes and is not user-configurable. Media redirection sessions persist across system reset but not across an AC power loss or BMC reset.

Network Port Usage

The KVM and media redirection features use the following ports:

- 5120 CD Redirection
- 5123 FD Redirection
- 5124 CD Redirection (Secure)
- 5127 FD Redirection (Secure)
- 7578 Video Redirection
- 7582 Video Redirection (Secure)

For additional information, reference the Intel®Remote Management Module 4 and Integrated BMC Web Console Users Guide.

Appendix A: Integration and Usage Tips

This section provides a list of useful information that is unique to the Chenbro RM14604/08 and should be kept in mind while configuring your server system.

- When adding or removing components or peripherals from the server board, you must remove the AC power cord. With ACpower plugged into the server board, 5-V standby is still present even though the server board is powered off.
- This server board supports the Intel® Xeon® Processor E3-1200 V5 product family with a Thermal Design Power (TDP) of up to and including 80 Watts. Previous generation Intel®Xeon® processors are not supported.
- On the back edge of the server board are EIGHT (2 rows of 4) diagnostic LEDs that display a sequence of POST codes during the boot process. If the server board hangs during POST, the LEDs display the last POST event run before the hang.
- Only ECC Unbuffered DDR4 DIMMs (UDIMMs) are supported on this Product Family.
- Clear CMOS with the AC power cord plugged in. Removing AC power before performing the CMOS Clear operation causes the system to automatically power up and immediately power down after the CMOS Clear procedure is followed and AC power is re-applied. If this happens, remove the AC power cord, wait 30 seconds, and then re-connect the AC power cord. Power up the system and proceed to the <F2> BIOS Setup Utility to reset the desired settings.
- Normal BMCfunctionality is disabled with the Force BMCUpdate jumper set to the "enabled" position (pins 2-3). You should never run the server with the Force BMCUpdate jumper set in this position and should only use the jumper in this position when the standard firmware update process fails. This jumper must remain in the default (disabled) position (pins 1-2) when the server is running normally.
- Make sure the recovery jumper is placed on pins 1-2, before a normal BIOS update procedure.

Appendix B: POST Code Diagnostic LED Decoder

As an aid to assist in trouble shooting a system hang that occurs during a system's Power-On Self-est (POST) process, the server board includes a bank of eight (2 rows of 4) POST Code Diagnostic LEDs on the back edge of the server board.

During the system boot process, Memory Reference Code (MRC) and System BIOS execute a number of memory initialization and platform configuration processes, each of which is assigned a specific hex POST code number. As each routine is started, the given POST code number is displayed to the POST Code Diagnostic LEDs on the back edge of the server board.

During a POST system hang, the displayed post code can be used to identify the last POST routine that was run prior to the error occurring, helping to isolate the possible cause of the hang condition.

Each POST code is represented by eight LEDs; four Green and four Amber. The POST codes are divided into two groups, an upper nibble and a lower nibble. The upper nibble bits are represented by Amber Diagnostic LEDs #4, #5, #6, #7. The lower nibble bits are represented by Green Diagnostics LEDs #0, #1, #2 and #3. If the bit is set in the upper and lower nibbles, the corresponding LED is lit. If the bit is clear, the corresponding LED is off.

Figure 44. POST Diagnostic LED Location

In the following example, the BIOS sends a value of ACh to the diagnostic LED decoder. The LEDs are decoded as follows:

	0				•
	LED #3	LED #2	LED #1	LED #0	
	8h (MSB)	4h	2h	1h (LSB)	
LED	ON	off	ON	off	Upper Nibble: Ah
Status	ON	ON	off	off	Lower Nibble: Ch
	8h (MSB)	4h	2h	1h (LSB)	DOST CODE: ACh
	LED #3	LED #2	LED #1	LED #0	FUSI WDE. AUI

Table 39.POST Progress Code LED Example

Note: Upper nibble bits = 1010b = Ah; Lower nibble bits = 1100b = Ch; the two are concatenated as ACh

The following table provides a list of all POST progress codes.

	_	Diagnostic LED Decoder					
	LED #	LED 3	LED 2	LED 1	LED 0		
a	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description	
Спескропт	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)		
SEC Phase							
01b	Upper Nibble	off	off	off	off	First POST code after CPU reset	
UIII	Lower Nibble	off	off	off	ON	Fist FOST tode alter CF0 Teset	
02h	Upper Nibble	off	off	off	off	Microcode load begin	
02n	Lower Nibble	off	off	ON	off	Fictocode toad begin	
03h	Upper Nibble	off	off	off	off	CRAM initialization begin	
	Lower Nibble	off	off	ON	ON	Civit-Initialization Begin	
0.45	Upper Nibble	off	off	off	off	Pai Cache When Disabled	
0411	Lower Nibble	off	ON	off	off	Ter cache when Disabled	
05h	Upper Nibble	off	off	off	off	SEC Core At Power On Begin	
	Lower Nibble	off	ON	off	ON	SEC COLE ACT OWER ON DEGIN.	
06h	Upper Nibble	off	off	off	off	Farly CPU initialization during Sec Phase	
0011	Lower Nibble	off	ON	ON	off	Early of o mitalization daming occi muser	
07h	Upper Nibble	off	off	off	off	Farly SB initialization during Sec Phase	
	Lower Nibble	off	ON	ON	ON	any opinitalization adming occi hase	
08h	Upper Nibble	off	off	off	off	Farly NB initialization during Sec Phase	
	Lower Nibble	ON	off	off	off	Lary no initialization during Sec Fildse.	

Table 40.POST Progress Codes
	Diagnostic LED Decoder									
	LED #	LED 3	LED 2	LED 1	LED 0					
Charlinsint	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description				
спескроіпт	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)					
09b	Upper Nibble	off	off	off	off	End Of Sec Phase				
	Lower Nibble	ON	off	off	ON					
OEh	Upper Nibble	off	off	off	off	Microcode Not Found.				
0En	Lower Nibble	ON	ON	ON	off	herocode hotrodina.				
OFh	Upper Nibble	off	off	off	off	Microcode Not Loaded.				
	Lower Nibble	ON	ON	ON	ON					
PEI Phase										
10h	Upper Nibble	off	off	off	ON	PEI Core				
	Lower Nibble	off	off	off	off					
11b	Upper Nibble	off	off	off	ON	CPU PEIM				
	Lower Nibble	off	off	off	ON					
15h	Upper Nibble	off	off	off	ON	NB PEIM				
	Lower Nibble	off	ON	off	ON					
19h	Upper Nibble	off	off	off	ON	SB PEIM				
	Lower Nibble	ON	off	off	ON					
MRC Process	Codes – MRC Pro	ogress Code	Sequen	ce is exec	uted					
PEI Phase co	ntinued									
21h	Upper Nibble	off	off	ON	ON	Momony Installed				
310	Lower Nibble	off	off	off	ON	memory installed				
22h	Upper Nibble	off	off	ON	ON	CPU PEIM (Courlinit)				
5211	Lower Nibble	off	off	ON	off					
33h	Upper Nibble	off	off	ON	ON	CPU PEIM (Cache Init)				
	Lower Nibble	off	off	ON	ON					
4Fb	Upper Nibble	off	ON	off	off	Die IPI started				
	Lower Nibble	ON	ON	ON	ON					
DXE Phase			-							
60b	Upper Nibble	off	ON	ON	off	DXE Core started				
	Lower Nibble	off	off	off	off					
61b	Upper Nibble	off	ON	ON	off	DXE NVRAM Init				
	Lower Nibble	off	off	off	ON					
62h	Upper Nibble	off	ON	ON	off	SB RUN Init				
0211	Lower Nibble	off	off	ON	off					

Diagnostic LED Decoder									
	LED #	LED 3	LED 2	LED 1	LED 0				
Chackmaint	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description			
Спескропт	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)				
63h	Upper Nibble	off	ON	ON	off	DXE CPU Init			
	Lower Nibble	off	off	ON	ON				
65h	Upper Nibble	off	ON	ON	off	DXE CPU BSP Select			
0011	Lower Nibble	off	ON	off	ON				
66h	Upper Nibble	off	ON	ON	off	DXF CPU AP Init			
0011	Lower Nibble	off	ON	ON	off				
68h	Upper Nibble	off	ON	ON	off	DXE PCI Host Bridge Init			
0011	Lower Nibble	ON	off	off	off	DAL T CHAOSE DHAGE HIT			
69h	Upper Nibble	off	ON	ON	off	DXE NB Init			
0011	Lower Nibble	ON	off	off	ON				
6Ab	Upper Nibble	off	ON	ON	off	DXE NB SMM Init			
0/11	Lower Nibble	ON	off	ON	off				
70h	Upper Nibble	off	ON	ON	ON	DYE SB Init			
	Lower Nibble	off	off	off	off				
71h	Upper Nibble	off	ON	ON	ON				
7111	Lower Nibble	off	off	off	ON	DAE 3D SHIPFINIC			
72h	Upper Nibble	off	ON	ON	ON	DYE SB devices Init			
7211	Lower Nibble	off	off	ON	off	DAL 3D devices mit			
78h	Upper Nibble	off	ON	ON	ON				
7011	Lower Nibble	ON	off	off	off				
79h	Upper Nibble	off	ON	ON	ON	DYE CSM Init			
7511	Lower Nibble	ON	off	off	ON				
	Upper Nibble	ON	off	off	off				
80h	Lower Nibble	off	off	off	off	DXE BDS Started			
01b	Upper Nibble	ON	off	off	off	DVE BDS connect drivers			
0111	Lower Nibble	off	off	off	ON	DAE BDS connect drivers			
0.21	Upper Nibble	ON	off	off	off				
0211	Lower Nibble	off	off	ON	off				
83h	Upper Nibble	ON	off	off	off	DXE PCI Bus HPC Init			
0311	Lower Nibble	off	off	ON	ON				
84b	Upper Nibble	ON	off	off	off	DXF PCI Bus enumeration			
	Lower Nibble	off	ON	off	off				

Diagnostic LED Decoder	Diagnostic LED Decoder							
LED # LED 3 LED 2 LED 1 LED 0								
Checkpoint Upper Nibble 8h (MSB) 4h 2h 1h (LSB) Description								
Lower Nibble 8h (MSB) 4h 2h 1h (LSB)								
85h Upper Nibble ON off off OF DXE PCI Bus resource requested								
Lower Nibble off ON off ON								
86h Upper Nibble ON off off Off DXE PCI Bus assign resource								
Lower Nibble off ON ON off								
87h Upper Nibble ON off off Off DXE CON_OUT connect								
Lower Nibble off ON ON ON								
88h Upper Nibble ON off off Off DXE CON IN connect								
Lower Nibble ON off off off								
89b Upper Nibble ON off off Off DXE SIQ Init								
Lower Nibble ON off off ON								
Upper Nibble ON off off								
8A DXE USB start								
8B Lower Nibble ON off ON ON DXE USB reset								
Lipper Nibble ON off off								
8C Lower Nibble ON ON off Off DXE USB detect								
Linner Nikhle ON off off								
8D Lower Nibble ON ON Off ON DXE USB enable								
90h DXE IDE begin								
91h Lower Nibble off off ON DXE IDE reset								
92h Lower Nibble off off ON off								
Upper Nibble ON off ON								
93h Lower Nibble off off ON ON DXE IDE enable								
Upper Nibble ON off ON								
94h Lower Nibble off ON off off DXE SCSI begin								
Upper Nibble ON off ON								
95h Lower Nibble off ON off ON								
Upper Nibble ON off ON								
96h Lower Nibble off ON ON off DXE SCSI detect								

Diagnostic L	ED Decoder					
	LED #	LED 3	LED 2	LED 1	LED 0	
Chackpoint	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description
спескропт	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)	Detect DIMM population Set DDR4 frequency Gather remaining SPD data Program registers on the memory controller lev Evaluate RAS modes and save rank information Program registers on the channel level
MRC Progres	s Codes					
BOb	Upper Nibble	ON	off	ON	ON	
DOIT	Lower Nibble	off	off	off	off	Set DDR4 frequency
R1b	Upper Nibble	ON	off	ON	ON	Set DDP4 frequency
DIII	Lower Nibble	off	off	off	ON	Set DDR4 frequency
Pab	Upper Nibble	ON	off	ON	ON	Cathor romaining SDD data
DZII	Lower Nibble	off	off	ON	off	Gather remaining SPD Gata
Pab	Upper Nibble	ON	off	ON	ON	Program registers on the memory controller level
DSH	Lower Nibble	off	off	ON	ON	Program registers on the memory controller level
Rab	Upper Nibble	ON	off	ON	ON	Evaluate PAS modes and save rank information
D411	Lower Nibble	off	ON	off	off	LValuate KAS modes and save rank mormation
B5h	Upper Nibble	ON	off	ON	ON	Program registers on the channel level
	Lower Nibble	off	ON	off	ON	riogram registers on the channel level
Beb	Upper Nibble	ON	off	ON	ON	Perform the IEDEC defined initialization sequence
Don	Lower Nibble	off	ON	ON	off	renominate SEDEC denned initialization sequence
B7b	Upper Nibble	ON	off	ON	ON	Train DDR4 ranks
5711	Lower Nibble	off	ON	ON	ON	
B8h	Upper Nibble	ON	off	ON	ON	Initialize CLTT/OLTT
Don	Lower Nibble	ON	off	off	off	
B9h	Upper Nibble	ON	off	ON	ON	Hardware memory test and init
2011	Lower Nibble	ON	off	off	ON	That a water memory cest and mite
BAb	Upper Nibble	ON	off	ON	ON	Execute software memory init
Di ui	Lower Nibble	ON	off	ON	off	Dicease Softmare memory mile
BBh	Upper Nibble	ON	off	ON	ON	Program memory map and interleaving
2211	Lower Nibble	ON	off	ON	ON	rogrammenter) map and meeter map
BCh	Upper Nibble	ON	off	ON	ON	Program RAS configuration
	Lower Nibble	ON	ON	off	off	
BEb	Upper Nibble	ON	off	ON	ON	MRC is done
	Lower Nibble	ON	ON	ON	ON	Tirke is done

Diagnosti	Diagnostic LED Decoder							
	LED #	LED 3	LED 2	LED 1	LED 0			
Checkp	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description		
oint	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)			
MRC Fatal Error Codes								
	Upper					No usable memory error		
Eap	Nibble	ON	ON	ON	off	01h = No memory was detected from the SPD read, or invalid config that causes no operable memory.		
Lon	Lower Nibble	ON	off	off	off	02h = Memory DIMMs on all channels of all sockets are disabled due to hardware mem-test error.		
						3h = No memory installed. All channels are disabled.		
Eab	Upper Nibble	ON	ON	ON	off	Memory is locked by Intel [®] Trusted Execution Technology		
Lan	Lower Nibble	ON	off	off	ON	and is inaccessible		
		ON	ON	ON	off	DDR4 channel training error		
	Upper Nibble					01h = Error on read DQ/DQS (Data/Data Strobe) init		
EAh						02h = Error on Receive Enable		
	Lower	ON	off	ON	off	3h = Error on Write Leveling		
	Nibble				011	04h = Error on write DQ/DQS (Data/Data Strobe		
						Memory test failure		
	Upper Nibble	ON	ON	ON	off	01h = Software mem-test failure.		
EBh						02h = Hardware mem-test failed.		
EBh	Lower Nibble	ON	off	ON	ON	03h = Hardware Mem-test failure in Lockstep Channel mode requiring a channel to be disabled. This is a fatal error which requires a reset and calling MRC with a different RAS mode to retry.		

Diagnostic LED Decoder									
	LED #	LED 3	LED 2	LED 1	LED 0				
Chackmaint	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description			
спескропт	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)				
S3 Resume									
40h	Upper Nibble	off	ON	off	off	S2 Decume DEIM (S2 started)			
401	Lower Nibble	off	off	off	off	55 Resume FEIM (55 started)			
416	Upper Nibble	off	ON	off	off	S2 Bosumo BEIM (S2 boot script)			
4111	Lower Nibble	off	off	off	ON	35 Resume FEIM (35 DOOL SCHPI)			
426	Upper Nibble	off	ON	off	off	S2 Documo DEIM (S2 \/ideo Doport)			
4211	Lower Nibble	off	off	ON	off	55 Resume FEIM (55 Video Repost)			
42h	Upper Nibble	off	ON	off	off	S2 Bosumo BEIM (S2 OS vialco)			
4311	Lower Nibble	off	off	ON	ON	55 Resume FEIM (55 US wake)			
		·				-			
BIOS Recove	ry								
46b	Upper Nibble	off	ON	off	off	PEIM which detected forced Pacewary condition			
401	Lower Nibble	off	ON	ON	off	Pelly which detected forced Recovery condition			
47h	Upper Nibble	off	ON	off	off	PEIM which detected Licer Percevery condition			
4711	Lower Nibble	off	ON	ON	ON	PEIN which detected user Recovery condition			
48b	Upper Nibble	off	ON	off	off	Recovery PEIM (Recovery started)			
4011	Lower Nibble	ON	off	off	off	Recovery Fein (Recovery started)			
49b	Upper Nibble	off	ON	off	off	Recovery PEIM (Capsule found)			
4511	Lower Nibble	ON	off	off	ON	Recovery Fein (capsule round)			
4Ab	Upper Nibble	off	ON	off	off	Recovery PEIM (Cansule loaded)			
-+/11	Lower Nibble	ON	off	ON	off	Necovery FLIP (Capsule loaded)			

POST Memory Initialization MRC Diagnostic Codes

There are two types of POST Diagnostic Codes displayed by the MRC during memory initialization; Progress Codes and Fatal Error Codes.

The MRC Progress Codes are displays to the Diagnostic LEDs that show the execution point in the MRC operational path at each step.

Table 41.MRC Progress Codes

Diagnostic L	ED Decoder					
	LED #	LED 3	LED 2	LED 1	LED 0	
Charlensint	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description
спескропи	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)	
MRC Progres	s Codes					
BOh	Upper Nibble	ON	off	ON	ON	
bon	Lower Nibble	off	off	off	off	Detect Dinni population
B1b	Upper Nibble	ON	off	ON	ON	Set DDR4 frequency
Dill	Lower Nibble	off	off	off	ON	Set DDR4 nequency
Bab	Upper Nibble	ON	off	ON	ON	Gather remaining SPD data
DZII	Lower Nibble	off	off	ON	off	Gather remaining of D data
B3h	Upper Nibble	ON	off	ON	ON	Program registers on the memory controller level
2511	Lower Nibble	off	off	ON	ON	riogram registers on the memory controller level
B4h	Upper Nibble	ON	off	ON	ON	Evaluate RAS modes and save rank information
2411	Lower Nibble	off	ON	off	off	Evaluate to to modes and save faile mornation
B5h	Upper Nibble	ON	off	ON	ON	Program registers on the channel level
	Lower Nibble	off	ON	off	ON	riogram registers on the charmer tever
B6h	Upper Nibble	ON	off	ON	ON	Perform the IEDEC defined initialization sequence
Don	Lower Nibble	off	ON	ON	off	renominate 5252e denned initialization sequence
B7h	Upper Nibble	ON	off	ON	ON	Train DDR4 ranks
27.11	Lower Nibble	off	ON	ON	ON	
B8h	Upper Nibble	ON	off	ON	ON	Initialize CLTT/OLTT
2011	Lower Nibble	ON	off	off	off	
B9h	Upper Nibble	ON	off	ON	ON	Hardware memory test and init
2011	Lower Nibble	ON	off	off	ON	
BAb	Upper Nibble	ON	off	ON	ON	Execute software memory init
Di ui	Lower Nibble	ON	off	ON	off	
BBb	Upper Nibble	ON	off	ON	ON	Program memory map and interleaving
	Lower Nibble	ON	off	ON	ON	······································
BCh	Upper Nibble	ON	off	ON	ON	Program RAS configuration
	Lower Nibble	ON	ON	off	off	· ····································
BEb	Upper Nibble	ON	off	ON	ON	MRC is done
	Lower Nibble	ON	ON	ON	ON	Time is done

Memory Initialization at the beginning of POST includes multiple functions, including: discovery, channel training, validation that the DIMM population is acceptable and functional, initialization of the IMC and other hardware settings, and initialization of applicable RAS configurations.

When a major memory initialization error occurs and prevents the system from booting with data

integrity, a beep code is generated, the MRC will display a fatal error code on the diagnostic LEDs, and a system halt command is executed. Fatal MRC error halts do NOT change the state of the System Status LED, and they do NOT get logged as SEL events. The following table lists all MRC fatal errors that are displayed to the Diagnostic LEDs.

Diagnosti	Diagnostic LED Decoder							
	LED #	LED 3	LED 2	LED 1	LED 0			
Checkp	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description		
oint	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)			
MRC Fata	l Error Codes							
	Upper					No usable memory error		
Fab	Nibble	ON	ON	ON	off	01h = No memory was detected from the SPD read, or invalid config that causes no operable memory.		
Lon	Lower	Lower ON Nibble	off	off	off	02h = Memory DIMMs on all channels of all sockets are disabled due to hardware mem-test error.		
	NIDDLE					3h = No memory installed. All channels are disabled.		
Eab Upp	Upper Nibble	ON	ON	ON	off	Memory is locked by Intel® Trusted Execution Technology		
Lon	Lower Nibble	ON	off	off	ON	and is inaccessible		
		Upper ON Nibble	ON	ON	off	DDR4 channel training error		
	Upper Nibble					01h = Error on read DQ/DQS (Data/Data Strobe) init		
EAh						02h = Error on Receive Enable		
	Lower	ON	off	ON	off	3h = Error on Write Leveling		
	Nibble				011	04h = Error on write DQ/DQS (Data/Data Strobe		
						Memory test failure		
	Upper Nibble	ON	ON	ON	off	01h = Software mem-test failure.		
EBh						02h = Hardware mem-test failed.		
	Lower Nibble	ON	off	ON	ON	03h = Hardware Mem-test failure in Lockstep Channel mode requiring a channel to be disabled. This is a fatal error which requires a reset and calling MRC with a different RAS mode to retry.		

Table 42.POST Progress LED Codes

Diagnostic LED Decoder							
	LED #	LED 3	LED 2	LED 1	LED 0		
Checkp oint	Upper Nibble	8h (MSB)	4h	2h	1h (LSB)	Description	
	Lower Nibble	8h (MSB)	4h	2h	1h (LSB)		
Uppe Nibb						DIMM configuration population error	
	Upper Nibble	ON	ON	ON	off	01h = Different DIMM types (UDIMM, RDIMM, LRDIMM) are detected installed in the system.	
						02h = Violation of DIMM population rules.	
EDN	Lauran	er ON	ON	off	ON	03h = The 3rd DIMM slot cannot be populated when QR DIMMs are installed.	
	Nibble					04h = UDIMMs are not supported in the 3rd DIMM slot.	
						05h = Unsupported DIMM Voltage.	
FEb	Upper Nibble	ON	ON	ON	off	Indicates a CLTT table structure error	
	Lower Nibble	ON	ON	ON	ON		

Appendix C: POST Code Errors

Most error conditions encountered during POST are reported using POST Error Codes. These codes represent specific failures, warnings, or are informational. POST Error Codes may be displayed in the Error Manager Display screen, and are always logged to the System Event Log (SEL). Logged events are available to System Management applications, including Remote and Out of Band (OOB) management.

There are exception cases in early initialization where system resources are not adequately initialized for handling POST Error Code reporting. These cases are primarily Fatal Error conditions resulting from initialization of processors and memory, and they are handed by a Diagnostic LED display with a system halt.

The following table lists the supported POST Error Codes. Each error code is assigned an error type which determines the action the BIOS will take when the error is encountered. Error types include Minor, Major, and Fatal. The BIOS action for each is defined as follows:

- Minor: The error message is displayed on the screen or on the Error Manager screen, and an error is logged to the SEL. The system continues booting in a degraded state. The user may want to replace the erroneous unit. The POST Error Pause option setting in the BIOS setup does not have any effect on this error.
- Major: The error message is displayed on the Error Manager screen, and an error is logged to the SEL. The POST Error Pause option setting in the BIOS setup determines whether the system pauses to the Error Manager for this type of error so the user can take immediate corrective action or the system continues booting.

Note that for 0048 "Password check failed", the system halts, and then after the next reset/reboot will displays the error code on the Error Manager screen.

 Fatal: The system halts during post at a blank screen with the text "Unrecoverable fatal error found.System will not boot until the error is resolved" and "Press <F2> to enter setup" The POST Error Pause option setting in the BIOS setup does not have any effect with this class of error.

When the operator presses the F2 key on the keyboard, the error message is displayed on the Error Manager screen, and an error is logged to the SEL with the error code. The system cannot boot unless the error is resolved. The user needs to replace the faulty part and restart the system.

NOTE: The POST error codes in the following table are common to all current generation Intel server platforms. Features present on a given server board/system will determine which of the listed error codes are supported

Error Code	Error Message	Response
0012	System RTC date/time not set	Major
0048	Password check failed	Major
0140	PCI component encountered a PERR error	Major
0141	PCI resource conflict	Major
0146	PCI out of resources error	Major
0191	Processor core/thread count mismatch detected	Fatal
0192	Processor cache size mismatch detected	Fatal
0194	Processor family mismatch detected	Fatal
Error Code	Error Message	Response
0195	Processor Intel(R) QPI link frequencies unable to synchronize	Fatal
0196	Processor model mismatch detected	Fatal
0197	Processor frequencies unable to synchronize	Fatal
5220	BIOS Settings reset to default settings	Major
5221	Passwords cleared by jumper	Major
5224	Password clear jumper is Set	Major
8130	Processor 01 disabled	Major
8131	Processor 02 disabled	Major
8160	Processor 01 unable to apply microcode update	Major
8161	Processor 02 unable to apply microcode update	Major
8170	Processor 01 failed Self Test (BIST)	Major
8171	Processor 02 failed Self Test (BIST)	Major
8180	Processor 01 microcode update not found	Minor
8181	Processor 02 microcode update not found	Minor
8190	Watchdog timer failed on last boot	Major
8198	OS boot watchdog timer failure	Major
8300	Baseboard management controller failed self test	Major
8305	Hot Swap Controller failure	Major
83A0	Management Engine (ME) failed self test	Major
83A1	Management Engine (ME) Failed to respond.	Major
84F2	Baseboard management controller failed to respond	Major
84F3	Baseboard management controller in update mode	Major
84F4	Sensor data record empty	Major
84FF	System event log full	Minor
8500	Memory component could not be configured in the selected RAS mode	Major
8501	DIMM Population Error	Major
8520	DIMM_A1 failed test/initialization	Major
8521	DIMM_A2 failed test/initialization	Major
8523	DIMM_B1 failed test/initialization	Major
8524	DIMM_B2 failed test/initialization	Major
8540	DIMM_A1 disabled	Major

8541	DIMM_A2 disabled	Major
8543	DIMM_B1 disabled	Major
8544	DIMM_B2 disabled	Major
8560	DIMM_A1 encountered a Serial Presence Detection (SPD) failure	Major
8561	DIMM_A2 encountered a Serial Presence Detection (SPD) failure	Major
8563	DIMM_B1 encountered a Serial Presence Detection (SPD) failure	Major
8564	DIMM_B2 encountered a Serial Presence Detection (SPD) failure	Major
8604	POST Reclaim of non-critical NVRAM variables	Minor
8605	BIOS Settings are corrupted	Major
8606	NVRAM variable space was corrupted and has been reinitialized	Major
	Recovery boot has been initiated.	Fatal
8607	NOTE: The Primary BIOS image may be corrupted or the system may hang during POST. A BIOS update is required.	

Error Code	Error Message	Response
92A3	Serial port component was not detected	Major
92A9	Serial port component encountered a resource conflict error	Major
A000	TPM device not detected.	Minor
A001	TPM device missing or not responding.	Minor
A002	TPM device failure.	Minor
A003	TPM device failed self-test.	Minor
A100	BIOS ACM Error	Major
A421	PCI component encountered a SERR error	Fatal
A5A0	PCI Express component encountered a PERR error	Minor
A5A1	PCI Express component encountered an SERR error	Fatal
A6A0	DXE Boot Services driver: Not enough memory available to shadow a Legacy Option ROM.	Minor

POST Error Beep Codes

The following table lists the POST error beep codes. Prior to system video initialization, the BIOS uses these beep codes to inform users on error conditions. The beep code is followed by a user-visible code on the POST Progress LEDs.

Table 44.POST Error Beep Codes

Beeps	Error Message	POST Progress Code	Description	
1	USB device action	N/A	Short beep sounded whenever USB device is discovered in POST, or inserted or removed during runtime.	
1 long	Intel [®] TXT security violation	OxAE, OxAF	System halted because Intel® Trusted Execution Technology detected a potential violation of system security.	
3	Memory error	Multiple	System halted because a fatal error related to the memory was detected.	
3 long and 1	CPU mismatch error	0xE5, 0xE6	System halted because a fatal error related to the CPU family/core/cache mismatch was detected.	
The following Beep Codes are sounded during BIOS Recovery.				
2	BIOS Recovery started	N/A	Recovery boot has been initiated.	
4	BIOS Recovery failure	N/A	BIOS recovery has failed. This typically happens so quickly after recovery us initiated that it sounds like a 2-4 beep code.	

The Integrated BMC may generate beep codes upon detection of failure conditions. Beep codes are sounded each time the problem is discovered, such as on each power-up attempt, but are not sounded continuously. Codes that are common across all Intel server boards and systems that use same generation chipset are listed in the following table. Each digit in the code is represented by a sequence of beeps whose count is equal to the digit.

Table 45.Integrated BMC Beep Codes

Code	Associated Sensors	Reason for Beep
1-5-2-1	No CPUs installed or first CPU socket is empty.	CPU1 socket is empty, or sockets are populated incorrectly
		CPU1 must be populated before CPU2.
1-5-2-4	MSID Mismatch	MSID mismatch occurs if a processor is installed into a system board that has incompatible power capabilities.
1-5-4-2	Power fault	DC power unexpectedly lost (power good dropout) – Power unit sensors report power unit failure offset
1-5-4-4	Power control fault (power good assertion timeout).	Power good assertion timeout – Power unit sensors report soft power control failure offset
1-5-1-2	VR Watchdog Timer sensor assertion	VR controller DC power on sequence was not completed in time.
1-5-1-4	Power Supply Status	The system does not power on or unexpectedly powers off and a Power Supply Unit (PSU) is present that is an incompatible model with one or more other PSUs in the system.

Appendix D: High Temperature Ambient Info

The system can operate in an environment that complies with ASHARE Class A3 specification with no hardware configuration limitation. However, there are limitations regarding the time that the system can operate in such situation.

The ASHARE Class A3 specification includes operation of the system in an environment with a temperature of 40°C for up to 900 hours per year. The use beyond this limits may impact system reliability.

The following notes communicate support criteria associated with specific configurations identified in the following table. Each relevant note to a configuration is identified by reference number in the table.

1. The 27°C configuration alone is limited to elevations of 900m or less. Altitudes higher than 900m need to be de-rated to ASHRAEClass 2 levels.

 To support system fan redundancy, the system must be configured with two power supplies to maintain sufficient cooling. Concurrent system and power supply fan failures is not supported.
 Processor and memory throttling may occur which may impact system performance. CPU reliability is not impacted.

4. In fan fail mode, Intel®I/O Modules AXX10GBTWLIOM and AXX2FDRIBIOM are only supported in the specified base system model configured with 120W processors and DRx4 memory.

5. Use of the designated PCIe* slot is limited to add-in cards that have a limit of 55°C local ambient temperature and air flow requirements of 200 LFM or less. Please refer to the add-in card specs for air flow requirements.

6. For ASHRAE Class 3 and Class 4 support, the following power supply margining is required to meet thermal specifications:

a) For dual power supply configurations, the power budget must fit within a single power supply rated load and be installed in a dual configuration, or

b) For single power supply configurations, the power budget must be sized with 30% margin to single power supply rated load.

7. The system only supports PCIe* SSD Add-in Card FF devices which have operational temperature limits of 55°C local ambient temperature and 300LFM.

8. The Intel[®] RAID Maintenance Free Backup Unit (AXXRMFBUx) can support a case temperature of up to 45°C with the system operating in normal mode and up to 55°C with the system operating in a fan fail mode. Excursions over these specs may result in a reliability impact.

9. M.2 drives may see performance impact under heavy work load

10. Light workload is assuming 70% write, 30% read, 100% Random, 100% access, 8kb transfer rate, I/O "delay" of 8ms

11. M.2 drives may see a slight performance impact under light workloads.